shenyunhang's picture
-a
52e4f53
raw
history blame
6.78 kB
import logging
import os
from dataclasses import dataclass
from typing import Dict, List, Sequence, Union
import datasets
import torch
import transformers
from datasets import concatenate_datasets, load_dataset
from .data_collator import DataCollatorForSupervisedDataset, collate_fn_deepspeed
from .dataset_cosyvoice2 import CosyVoice2Dataset
from .dataset_deepseek import DeepSeekDataset
from .dataset_hunyuan import HunyuanDataset
from .dataset_llama3 import Llama3Dataset
from .dataset_mistral import MistralDataset
from .dataset_qwen2 import Qwen2Dataset
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def build_supervised_dataset_deepspeed(
model_config,
model_args,
data_args,
training_args,
tokenizer,
create_position_ids=True,
create_loss_mask=False,
shift_token=False,
):
logging.info("building dataset...")
cfg_path = data_args.dataset_name
max_padding_length = model_args.model_max_length
output_dir = training_args.output_dir
# prompt_format = model_args.prompt_format
create_attention_mask = data_args.create_attention_mask
create_attention_mask_2d = data_args.create_attention_mask_2d
image_size = model_args.image_size
image_token_length = model_args.image_token_length
max_num_frame = model_args.max_num_frame
max_fps = model_args.max_fps
reset_position_ids = data_args.reset_position_ids
reset_attention_mask = data_args.reset_attention_mask
variable_length = data_args.variable_length
min_patch_grid = model_args.min_patch_grid
max_patch_grid = model_args.max_patch_grid
process_type = model_args.vision_process_type
normalize_type = model_args.vision_normalize_type
audio_tokenizer_path = model_args.audio_tokenizer_path
audio_tokenizer_type = model_args.audio_tokenizer_type
text_audio_interval_ratio = model_args.text_audio_interval_ratio
seed = training_args.seed
cross_dataset_joint = data_args.cross_dataset_joint
dataset_joint = data_args.dataset_joint
if "long_vita" in getattr(model_config, "model_type", None):
TrainDataset = Qwen2Dataset
elif "cosyvoice2" in getattr(model_config, "model_type", None):
TrainDataset = CosyVoice2Dataset
elif "qwen2" in getattr(model_config, "model_type", None):
TrainDataset = Qwen2Dataset
elif getattr(model_config, "model_type", None) == "hunyuan":
TrainDataset = HunyuanDataset
elif getattr(model_config, "model_type", None) == "mixtral":
TrainDataset = Llama2Dataset
elif "llama" in getattr(model_config, "model_type", None):
TrainDataset = Llama3Dataset
elif "deepseek" in getattr(model_config, "model_type", None):
TrainDataset = DeepSeekDataset
else:
raise NotImplementedError
train_dataset = TrainDataset(
cfg_path,
tokenizer,
image_size=image_size,
image_token_length=image_token_length,
max_padding_length=max_padding_length,
variable_length=variable_length,
output_dir=output_dir,
training_args=None,
shift_token=shift_token,
create_position_ids=create_position_ids,
create_attention_mask=create_attention_mask,
create_attention_mask_2d=create_attention_mask_2d,
create_loss_mask=create_loss_mask,
max_num_frame=max_num_frame,
max_fps=max_fps,
reset_position_ids=reset_position_ids,
reset_attention_mask=reset_attention_mask,
min_patch_grid=min_patch_grid,
max_patch_grid=max_patch_grid,
process_type=process_type,
normalize_type=normalize_type,
seed=seed,
cross_dataset_joint=cross_dataset_joint,
dataset_joint=dataset_joint,
audio_tokenizer_type=audio_tokenizer_type,
audio_tokenizer_path=audio_tokenizer_path,
text_audio_interval_ratio=text_audio_interval_ratio,
use_megatron=False,
)
eval_dataset = None
# data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
data_collator = collate_fn_deepspeed
return dict(train=train_dataset, validation=eval_dataset, data_collator=data_collator)
def build_supervised_dataset_megatron(
args,
tokenizer,
create_position_ids=True,
create_loss_mask=False,
shift_token=False,
):
logging.info("building dataset...")
assert len(args.data_path) == 1
cfg_path = args.data_path[0]
max_padding_length = args.max_padding_length
output_dir = args.save
prompt_format = args.prompt_format
create_attention_mask = args.create_attention_mask_in_dataloader
create_attention_mask_2d = args.create_attention_mask_in_dataloader
# create_attention_mask=False
# create_attention_mask_2d=True
image_size = args.image_size
image_token_length = args.image_token_length
max_num_frame = args.max_num_frame
max_fps = args.max_fps
reset_position_ids = args.reset_position_ids
reset_attention_mask = args.reset_attention_mask
# reset_position_ids=True
# reset_attention_mask=True
min_patch_grid = args.min_patch_grid
max_patch_grid = args.max_patch_grid
process_type = args.vision_process_type
normalize_type = args.vision_normalize_type
seed = args.seed
cross_dataset_joint = args.cross_dataset_joint
dataset_joint = args.dataset_joint
if "qwen2" in prompt_format:
TrainDataset = Qwen2Dataset
elif prompt_format == "mistral":
raise NotImplementedError
TrainDataset = MistralDataset
elif prompt_format == "llama3":
TrainDataset = Llama3Dataset
if "deepseek" in prompt_format:
TrainDataset = DeepSeekDataset
else:
raise NotImplementedError
train_dataset = TrainDataset(
cfg_path,
tokenizer,
image_size=image_size,
image_token_length=image_token_length,
max_padding_length=max_padding_length,
variable_length=False,
output_dir=output_dir,
training_args=None,
shift_token=shift_token,
create_position_ids=create_position_ids,
create_attention_mask=create_attention_mask,
create_attention_mask_2d=create_attention_mask_2d,
create_loss_mask=create_loss_mask,
max_num_frame=max_num_frame,
max_fps=max_fps,
reset_position_ids=reset_position_ids,
reset_attention_mask=reset_attention_mask,
min_patch_grid=min_patch_grid,
max_patch_grid=max_patch_grid,
process_type=process_type,
normalize_type=normalize_type,
seed=seed,
cross_dataset_joint=cross_dataset_joint,
dataset_joint=dataset_joint,
use_megatron=True,
)
eval_dataset = None
return train_dataset, None, None