Spaces:
Running
on
Zero
Running
on
Zero
Add full model description and caution note to Gradio app
Browse files
app.py
CHANGED
@@ -1,66 +1,103 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
-
from transformers import T5Tokenizer, T5EncoderModel
|
5 |
-
import esm
|
6 |
-
from inference import load_models, predict_ensemble
|
7 |
-
from transformers import AutoTokenizer, AutoModel
|
8 |
-
import spaces
|
9 |
-
|
10 |
-
# Load trained models
|
11 |
-
model_protT5, model_cat = load_models()
|
12 |
-
|
13 |
-
# Load ProtT5 model
|
14 |
-
tokenizer_t5 = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", do_lower_case=False)
|
15 |
-
model_t5 = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
|
16 |
-
model_t5 = model_t5.eval()
|
17 |
-
|
18 |
-
# Load the tokenizer and model
|
19 |
-
model_name = "facebook/esm2_t33_650M_UR50D"
|
20 |
-
tokenizer_esm = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
esm_model = AutoModel.from_pretrained(model_name)
|
22 |
-
|
23 |
-
def extract_prott5_embedding(sequence):
|
24 |
-
sequence = sequence.replace(" ", "")
|
25 |
-
seq = " ".join(list(sequence))
|
26 |
-
ids = tokenizer_t5(seq, return_tensors="pt", padding=True)
|
27 |
-
with torch.no_grad():
|
28 |
-
embedding = model_t5(**ids).last_hidden_state
|
29 |
-
return torch.mean(embedding, dim=1)
|
30 |
-
|
31 |
-
|
32 |
-
# Extract ESM2 embedding
|
33 |
-
def extract_esm_embedding(sequence):
|
34 |
-
# Tokenize the sequence
|
35 |
-
inputs = tokenizer_esm(sequence, return_tensors="pt", padding=True, truncation=True)
|
36 |
-
|
37 |
-
# Forward pass through the model
|
38 |
-
with torch.no_grad():
|
39 |
-
outputs = esm_model(**inputs)
|
40 |
-
|
41 |
-
# Extract the embeddings from the 33rd layer (ESM2 layer)
|
42 |
-
token_representations = outputs.last_hidden_state # This is the default layer
|
43 |
-
return torch.mean(token_representations[0, 1:len(sequence)+1], dim=0).unsqueeze(0)
|
44 |
-
|
45 |
-
def estimate_duration(sequence):
|
46 |
-
# Estimate duration based on sequence length
|
47 |
-
base_time = 30 # Base time in seconds
|
48 |
-
time_per_residue = 0.5 # Estimated time per residue
|
49 |
-
estimated_time = base_time + len(sequence) * time_per_residue
|
50 |
-
return min(int(estimated_time), 300) # Cap at 300 seconds
|
51 |
-
|
52 |
-
@spaces.GPU(duration=120)
|
53 |
-
def classify(sequence):
|
54 |
-
protT5_emb = extract_prott5_embedding(sequence)
|
55 |
-
esm_emb = extract_esm_embedding(sequence)
|
56 |
-
concat = torch.cat((esm_emb, protT5_emb), dim=1)
|
57 |
-
pred = predict_ensemble(protT5_emb, concat, model_protT5, model_cat)
|
58 |
-
return "Potential Allergen" if pred.item() == 1 else "Non-Allergen"
|
59 |
-
|
60 |
-
|
61 |
-
demo = gr.Interface(fn=classify,
|
62 |
-
inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence..."),
|
63 |
-
outputs=gr.Label(label="Prediction"))
|
64 |
-
|
65 |
-
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
5 |
+
import esm
|
6 |
+
from inference import load_models, predict_ensemble
|
7 |
+
from transformers import AutoTokenizer, AutoModel
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
# Load trained models
|
11 |
+
model_protT5, model_cat = load_models()
|
12 |
+
|
13 |
+
# Load ProtT5 model
|
14 |
+
tokenizer_t5 = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", do_lower_case=False)
|
15 |
+
model_t5 = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
|
16 |
+
model_t5 = model_t5.eval()
|
17 |
+
|
18 |
+
# Load the tokenizer and model
|
19 |
+
model_name = "facebook/esm2_t33_650M_UR50D"
|
20 |
+
tokenizer_esm = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
esm_model = AutoModel.from_pretrained(model_name)
|
22 |
+
|
23 |
+
def extract_prott5_embedding(sequence):
|
24 |
+
sequence = sequence.replace(" ", "")
|
25 |
+
seq = " ".join(list(sequence))
|
26 |
+
ids = tokenizer_t5(seq, return_tensors="pt", padding=True)
|
27 |
+
with torch.no_grad():
|
28 |
+
embedding = model_t5(**ids).last_hidden_state
|
29 |
+
return torch.mean(embedding, dim=1)
|
30 |
+
|
31 |
+
|
32 |
+
# Extract ESM2 embedding
|
33 |
+
def extract_esm_embedding(sequence):
|
34 |
+
# Tokenize the sequence
|
35 |
+
inputs = tokenizer_esm(sequence, return_tensors="pt", padding=True, truncation=True)
|
36 |
+
|
37 |
+
# Forward pass through the model
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = esm_model(**inputs)
|
40 |
+
|
41 |
+
# Extract the embeddings from the 33rd layer (ESM2 layer)
|
42 |
+
token_representations = outputs.last_hidden_state # This is the default layer
|
43 |
+
return torch.mean(token_representations[0, 1:len(sequence)+1], dim=0).unsqueeze(0)
|
44 |
+
|
45 |
+
def estimate_duration(sequence):
|
46 |
+
# Estimate duration based on sequence length
|
47 |
+
base_time = 30 # Base time in seconds
|
48 |
+
time_per_residue = 0.5 # Estimated time per residue
|
49 |
+
estimated_time = base_time + len(sequence) * time_per_residue
|
50 |
+
return min(int(estimated_time), 300) # Cap at 300 seconds
|
51 |
+
|
52 |
+
@spaces.GPU(duration=120)
|
53 |
+
def classify(sequence):
|
54 |
+
protT5_emb = extract_prott5_embedding(sequence)
|
55 |
+
esm_emb = extract_esm_embedding(sequence)
|
56 |
+
concat = torch.cat((esm_emb, protT5_emb), dim=1)
|
57 |
+
pred = predict_ensemble(protT5_emb, concat, model_protT5, model_cat)
|
58 |
+
return "Potential Allergen" if pred.item() == 1 else "Non-Allergen"
|
59 |
+
|
60 |
+
|
61 |
+
demo = gr.Interface(fn=classify,
|
62 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence..."),
|
63 |
+
outputs=gr.Label(label="Prediction"))
|
64 |
+
|
65 |
+
# if __name__ == "__main__":
|
66 |
+
# demo.launch()
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
description_md = """
|
71 |
+
### ℹ️ **About AllerTrans – Allergenicity Prediction Tool**
|
72 |
+
|
73 |
+
**🧬 Input Format – FASTA Sequences**
|
74 |
+
This tool accepts protein sequences in FASTA format
|
75 |
+
|
76 |
+
**💡 Accepted Proteins**
|
77 |
+
- Natural and recombinant proteins
|
78 |
+
- Pharmaceutical and industrial proteins
|
79 |
+
- Synthetic sequences (tags or mutations allowed)
|
80 |
+
|
81 |
+
🔎 **Note of Caution**:
|
82 |
+
While our model demonstrates promising performance—particularly with recombinant proteins, as evidenced by our additional evaluation with a recombinant protein dataset
|
83 |
+
from UniProt—**we advise caution when generalizing the results to all recombinant protein scenarios**.
|
84 |
+
The specificity of the model to various recombinant constructs and modifications has not been explored.
|
85 |
+
|
86 |
+
**🧠 Prediction Process**
|
87 |
+
- Embeddings via ProtT5 + ESM-2
|
88 |
+
- Deep neural network for classification
|
89 |
+
|
90 |
+
**⚠️ Disclaimer**
|
91 |
+
Although AllerTrans provides highly accurate predictions, it is intended as a screening tool. For clinical or regulatory decisions, always confirm results with experimental validation.
|
92 |
+
"""
|
93 |
+
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown(description_md)
|
96 |
+
with gr.Row():
|
97 |
+
input_box = gr.Textbox(lines=3, placeholder="Enter protein sequence...")
|
98 |
+
output_label = gr.Label(label="Prediction")
|
99 |
+
classify_btn = gr.Button("Run Prediction")
|
100 |
+
classify_btn.click(classify, inputs=input_box, outputs=output_label)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
demo.launch()
|