Commit
·
fa08326
0
Parent(s):
first commit
Browse files- .github/workflows/hugggingface.yaml +17 -0
- Dockerfile +33 -0
- README.md +11 -0
- requirements.txt +9 -0
- src/app/__init__.py +0 -0
- src/app/__pycache__/pipelines.cpython-311.pyc +0 -0
- src/app/__pycache__/xai.cpython-311.pyc +0 -0
- src/app/main.py +89 -0
- src/app/pipelines.py +28 -0
- src/app/requirements.txt +11 -0
- src/app/test.ipynb +510 -0
- src/app/utils/__init__.py +0 -0
- src/app/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- src/app/utils/__pycache__/log_model.cpython-311.pyc +0 -0
- src/app/utils/__pycache__/text_features.cpython-311.pyc +0 -0
- src/app/utils/__pycache__/text_processing.cpython-311.pyc +0 -0
- src/app/utils/download_model.py +23 -0
- src/app/utils/log_model.py +56 -0
- src/app/utils/text_features.py +70 -0
- src/app/utils/text_processing.py +160 -0
- src/app/xai.py +27 -0
.github/workflows/hugggingface.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
|
6 |
+
jobs:
|
7 |
+
sync-to-hub:
|
8 |
+
runs-on: ubuntu-latest
|
9 |
+
steps:
|
10 |
+
- uses: actions/checkout@v3
|
11 |
+
with:
|
12 |
+
fetch-depth: 0
|
13 |
+
lfs: true
|
14 |
+
- name: Push to hub
|
15 |
+
env:
|
16 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
17 |
+
run: git push --force https://${{ secrets.HF_USERNAME }}:$HF_TOKEN@huggingface.co/spaces/${{ secrets.HF_USERNAME }}/${{ secrets.SPACE_NAME }} main
|
Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy files
|
7 |
+
COPY src/app ./src/app
|
8 |
+
|
9 |
+
# Install uv and Python packages
|
10 |
+
RUN pip install uv
|
11 |
+
RUN uv pip install --system -r /src/app/requirements.txt
|
12 |
+
|
13 |
+
# Create non-root user and give permissions
|
14 |
+
RUN useradd -m appuser && \
|
15 |
+
mkdir -p /app/cache /app/.streamlit && \
|
16 |
+
chown -R appuser:appuser /app
|
17 |
+
|
18 |
+
# Set environment variables for Hugging Face and Streamlit
|
19 |
+
ENV HF_HOME=/app/cache
|
20 |
+
ENV STREAMLIT_CONFIG_DIR=/app/.streamlit
|
21 |
+
|
22 |
+
# Switch to non-root user
|
23 |
+
USER appuser
|
24 |
+
|
25 |
+
# Expose Streamlit port
|
26 |
+
EXPOSE 8501
|
27 |
+
|
28 |
+
# Healthcheck
|
29 |
+
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health || exit 1
|
30 |
+
|
31 |
+
# Run Streamlit app
|
32 |
+
ENTRYPOINT ["streamlit", "run", "src/app/main.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
33 |
+
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: NLP conference Crossbridge
|
3 |
+
app_port: 8501
|
4 |
+
emoji: 🈂️
|
5 |
+
colorFrom: gray
|
6 |
+
colorTo: purple
|
7 |
+
sdk: docker
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
10 |
+
short_description: Traditional NLP for AI written detection
|
11 |
+
---
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy == 1.26.4
|
2 |
+
pandas == 2.2.0
|
3 |
+
pyarrow == 15.0.0
|
4 |
+
fastparquet == 2024.2.0
|
5 |
+
mlflow == 2.10.2
|
6 |
+
nltk == 3.8.1
|
7 |
+
seaborn == 0.13.2
|
8 |
+
matplotlib == 3.8.2
|
9 |
+
python-dotenv == 1.0.1
|
src/app/__init__.py
ADDED
File without changes
|
src/app/__pycache__/pipelines.cpython-311.pyc
ADDED
Binary file (2.64 kB). View file
|
|
src/app/__pycache__/xai.cpython-311.pyc
ADDED
Binary file (1.66 kB). View file
|
|
src/app/main.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import sys
|
3 |
+
from pipelines import pipeline_inference
|
4 |
+
from xai import get_explanation
|
5 |
+
import time
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
+
|
9 |
+
import nltk
|
10 |
+
|
11 |
+
nltk.download('stopwords')
|
12 |
+
|
13 |
+
|
14 |
+
st.title('Text identification app')
|
15 |
+
|
16 |
+
st.subheader('This app is designed to identify if a text was written by a human or an AI')
|
17 |
+
st.markdown('In many cases, using AI is not a suitable solution because this does not allow to develop creativity and innovation in written assessments')
|
18 |
+
|
19 |
+
col1, col2 = st.columns(2)
|
20 |
+
with col1:
|
21 |
+
a = st.button('Classify text')
|
22 |
+
with col2:
|
23 |
+
xai_option = st.toggle('Explain the classification', value = False)
|
24 |
+
|
25 |
+
with st.sidebar:
|
26 |
+
st.subheader('About the App')
|
27 |
+
st.markdown('Data used for the training come from the following source: https://www.kaggle.com/datasets/shanegerami/ai-vs-human-text')
|
28 |
+
st.markdown('The model built is not based on transformer architecture, it uses traditional Natural Language Processing techniques')
|
29 |
+
st.empty()
|
30 |
+
st.subheader('Author')
|
31 |
+
st.markdown('Sebastián Sarasti Zambonino')
|
32 |
+
st.markdown('Data Scientist - Machine Learning Engineer')
|
33 |
+
st.markdown('https://www.linkedin.com/in/sebastiansarasti/')
|
34 |
+
st.markdown('https://github.com/sebassaras02')
|
35 |
+
|
36 |
+
text_input = st.text_area('Enter the text to classify', height = 200)
|
37 |
+
|
38 |
+
|
39 |
+
result = None
|
40 |
+
if a and not xai_option:
|
41 |
+
if text_input:
|
42 |
+
with st.spinner('Classifying the text, wait please ...'):
|
43 |
+
time.sleep(1)
|
44 |
+
result = pipeline_inference(text_input)
|
45 |
+
|
46 |
+
st.subheader('Probability that the text was classified as:')
|
47 |
+
col1, col2 = st.columns(2)
|
48 |
+
with col1:
|
49 |
+
st.metric('Human written', result[0][0] )
|
50 |
+
with col2:
|
51 |
+
st.metric('AI written', result[0][1])
|
52 |
+
if result[0][1]>0.6:
|
53 |
+
st.warning('High probability that the text was written by an AI')
|
54 |
+
else:
|
55 |
+
st.success('High probability that the text was written by a human')
|
56 |
+
else:
|
57 |
+
st.exception('Please enter the text to classify, no text was provided')
|
58 |
+
|
59 |
+
elif a and xai_option:
|
60 |
+
if text_input:
|
61 |
+
with st.spinner('Classifying the text, wait please ...'):
|
62 |
+
time.sleep(1)
|
63 |
+
result = pipeline_inference(text_input)
|
64 |
+
|
65 |
+
st.subheader('Probability that the text was classified as:')
|
66 |
+
col1, col2 = st.columns(2)
|
67 |
+
with col1:
|
68 |
+
st.metric('Human written', result[0][0] )
|
69 |
+
with col2:
|
70 |
+
st.metric('AI written', result[0][1])
|
71 |
+
if result[0][1]>0.6:
|
72 |
+
st.warning('High probability that the text was written by an AI')
|
73 |
+
else:
|
74 |
+
st.success('High probability that the text was written by a human')
|
75 |
+
|
76 |
+
with st.spinner('Explaining the classification, wait please ...'):
|
77 |
+
explanation = get_explanation(text_input)
|
78 |
+
df = pd.DataFrame(list(explanation.items()), columns=['Palabras', 'Números'])
|
79 |
+
df['Signo'] = ['Positivo' if x >= 0 else 'Negativo' for x in df['Números']]
|
80 |
+
df = df.sort_values('Números', ascending=False)
|
81 |
+
df = df.rename(columns={'Palabras': 'Words', 'Números': 'Frequency', 'Signo': 'Type'})
|
82 |
+
df['Type'] = df['Type'].map({'Positivo': 'IA Pattern', 'Negativo': 'Humman Pattern'})
|
83 |
+
fig = px.bar(df, y='Words', x='Frequency', color='Type', color_discrete_map={'IA Pattern': 'red', 'Humman Pattern': 'blue'})
|
84 |
+
st.subheader('Explanation of the classification:')
|
85 |
+
st.markdown('The following words are the most important to classify the text:')
|
86 |
+
st.plotly_chart(fig)
|
87 |
+
|
88 |
+
|
89 |
+
|
src/app/pipelines.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
import mlflow
|
5 |
+
from joblib import dump, load
|
6 |
+
import sys
|
7 |
+
|
8 |
+
from utils.text_processing import TextProcessing
|
9 |
+
|
10 |
+
|
11 |
+
def pipeline_inference(input : str):
|
12 |
+
# load tf-idf model
|
13 |
+
tfidf_model = load('models/tfidf_model.joblib')
|
14 |
+
# load pca model
|
15 |
+
pca_model = load('models/pca_model.joblib')
|
16 |
+
# load the model
|
17 |
+
classifier_model = load('models/classifier_model.joblib')
|
18 |
+
|
19 |
+
# preprocess the input
|
20 |
+
text_processing = TextProcessing()
|
21 |
+
text_processed = text_processing.fit_transform_text(input)
|
22 |
+
vector = tfidf_model.transform([text_processed])
|
23 |
+
vector_pca = pca_model.transform(vector)
|
24 |
+
# make a vector with the pca values
|
25 |
+
df = pd.DataFrame(vector_pca, columns = ["dim1", "dim2", "dim3", "dim4", "dim5"])
|
26 |
+
# make the prediction
|
27 |
+
prediction = classifier_model.predict_proba(df)
|
28 |
+
return prediction
|
src/app/requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
pandas==2.2.0
|
3 |
+
pyarrow==15.0.0
|
4 |
+
fastparquet==2024.2.0
|
5 |
+
mlflow==2.10.2
|
6 |
+
nltk==3.8.1
|
7 |
+
seaborn==0.13.2
|
8 |
+
matplotlib==3.8.2
|
9 |
+
python-dotenv==1.0.1
|
10 |
+
plotly==5.19.0
|
11 |
+
lime==0.2.0.1
|
src/app/test.ipynb
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import mlflow\n",
|
10 |
+
"from dotenv import load_dotenv"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 5,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [
|
18 |
+
{
|
19 |
+
"data": {
|
20 |
+
"text/plain": [
|
21 |
+
"True"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"execution_count": 5,
|
25 |
+
"metadata": {},
|
26 |
+
"output_type": "execute_result"
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"source": [
|
30 |
+
"load_dotenv('../../.env')"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 6,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"tfidf_logged_model = 'runs:/a63128b897bd4f91a06f20939a715b98/tfidf_model'"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 7,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"name": "stderr",
|
49 |
+
"output_type": "stream",
|
50 |
+
"text": [
|
51 |
+
"c:\\Users\\sebit\\.conda\\envs\\mlops\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
52 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
53 |
+
"Downloading artifacts: 100%|██████████| 5/5 [00:02<00:00, 2.50it/s]\n"
|
54 |
+
]
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"source": [
|
58 |
+
"tfidf_model = mlflow.sklearn.load_model(tfidf_logged_model)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 9,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"data": {
|
68 |
+
"text/html": [
|
69 |
+
"<style>#sk-container-id-1 {\n",
|
70 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
71 |
+
" --sklearn-color-text: black;\n",
|
72 |
+
" --sklearn-color-line: gray;\n",
|
73 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
74 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
75 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
76 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
77 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
78 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
79 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
80 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
81 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
82 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
83 |
+
"\n",
|
84 |
+
" /* Specific color for light theme */\n",
|
85 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
86 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
87 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
88 |
+
" --sklearn-color-icon: #696969;\n",
|
89 |
+
"\n",
|
90 |
+
" @media (prefers-color-scheme: dark) {\n",
|
91 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
92 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
93 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
94 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
95 |
+
" --sklearn-color-icon: #878787;\n",
|
96 |
+
" }\n",
|
97 |
+
"}\n",
|
98 |
+
"\n",
|
99 |
+
"#sk-container-id-1 {\n",
|
100 |
+
" color: var(--sklearn-color-text);\n",
|
101 |
+
"}\n",
|
102 |
+
"\n",
|
103 |
+
"#sk-container-id-1 pre {\n",
|
104 |
+
" padding: 0;\n",
|
105 |
+
"}\n",
|
106 |
+
"\n",
|
107 |
+
"#sk-container-id-1 input.sk-hidden--visually {\n",
|
108 |
+
" border: 0;\n",
|
109 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
110 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
111 |
+
" height: 1px;\n",
|
112 |
+
" margin: -1px;\n",
|
113 |
+
" overflow: hidden;\n",
|
114 |
+
" padding: 0;\n",
|
115 |
+
" position: absolute;\n",
|
116 |
+
" width: 1px;\n",
|
117 |
+
"}\n",
|
118 |
+
"\n",
|
119 |
+
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
|
120 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
121 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
122 |
+
" box-sizing: border-box;\n",
|
123 |
+
" padding-bottom: 0.4em;\n",
|
124 |
+
" background-color: var(--sklearn-color-background);\n",
|
125 |
+
"}\n",
|
126 |
+
"\n",
|
127 |
+
"#sk-container-id-1 div.sk-container {\n",
|
128 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
129 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
130 |
+
" so we also need the `!important` here to be able to override the\n",
|
131 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
132 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
133 |
+
" display: inline-block !important;\n",
|
134 |
+
" position: relative;\n",
|
135 |
+
"}\n",
|
136 |
+
"\n",
|
137 |
+
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
|
138 |
+
" display: none;\n",
|
139 |
+
"}\n",
|
140 |
+
"\n",
|
141 |
+
"div.sk-parallel-item,\n",
|
142 |
+
"div.sk-serial,\n",
|
143 |
+
"div.sk-item {\n",
|
144 |
+
" /* draw centered vertical line to link estimators */\n",
|
145 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
146 |
+
" background-size: 2px 100%;\n",
|
147 |
+
" background-repeat: no-repeat;\n",
|
148 |
+
" background-position: center center;\n",
|
149 |
+
"}\n",
|
150 |
+
"\n",
|
151 |
+
"/* Parallel-specific style estimator block */\n",
|
152 |
+
"\n",
|
153 |
+
"#sk-container-id-1 div.sk-parallel-item::after {\n",
|
154 |
+
" content: \"\";\n",
|
155 |
+
" width: 100%;\n",
|
156 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
157 |
+
" flex-grow: 1;\n",
|
158 |
+
"}\n",
|
159 |
+
"\n",
|
160 |
+
"#sk-container-id-1 div.sk-parallel {\n",
|
161 |
+
" display: flex;\n",
|
162 |
+
" align-items: stretch;\n",
|
163 |
+
" justify-content: center;\n",
|
164 |
+
" background-color: var(--sklearn-color-background);\n",
|
165 |
+
" position: relative;\n",
|
166 |
+
"}\n",
|
167 |
+
"\n",
|
168 |
+
"#sk-container-id-1 div.sk-parallel-item {\n",
|
169 |
+
" display: flex;\n",
|
170 |
+
" flex-direction: column;\n",
|
171 |
+
"}\n",
|
172 |
+
"\n",
|
173 |
+
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
|
174 |
+
" align-self: flex-end;\n",
|
175 |
+
" width: 50%;\n",
|
176 |
+
"}\n",
|
177 |
+
"\n",
|
178 |
+
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
|
179 |
+
" align-self: flex-start;\n",
|
180 |
+
" width: 50%;\n",
|
181 |
+
"}\n",
|
182 |
+
"\n",
|
183 |
+
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
|
184 |
+
" width: 0;\n",
|
185 |
+
"}\n",
|
186 |
+
"\n",
|
187 |
+
"/* Serial-specific style estimator block */\n",
|
188 |
+
"\n",
|
189 |
+
"#sk-container-id-1 div.sk-serial {\n",
|
190 |
+
" display: flex;\n",
|
191 |
+
" flex-direction: column;\n",
|
192 |
+
" align-items: center;\n",
|
193 |
+
" background-color: var(--sklearn-color-background);\n",
|
194 |
+
" padding-right: 1em;\n",
|
195 |
+
" padding-left: 1em;\n",
|
196 |
+
"}\n",
|
197 |
+
"\n",
|
198 |
+
"\n",
|
199 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
200 |
+
"clickable and can be expanded/collapsed.\n",
|
201 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
202 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
203 |
+
"*/\n",
|
204 |
+
"\n",
|
205 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
206 |
+
"\n",
|
207 |
+
"#sk-container-id-1 div.sk-toggleable {\n",
|
208 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
209 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
210 |
+
" background-color: var(--sklearn-color-background);\n",
|
211 |
+
"}\n",
|
212 |
+
"\n",
|
213 |
+
"/* Toggleable label */\n",
|
214 |
+
"#sk-container-id-1 label.sk-toggleable__label {\n",
|
215 |
+
" cursor: pointer;\n",
|
216 |
+
" display: block;\n",
|
217 |
+
" width: 100%;\n",
|
218 |
+
" margin-bottom: 0;\n",
|
219 |
+
" padding: 0.5em;\n",
|
220 |
+
" box-sizing: border-box;\n",
|
221 |
+
" text-align: center;\n",
|
222 |
+
"}\n",
|
223 |
+
"\n",
|
224 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
|
225 |
+
" /* Arrow on the left of the label */\n",
|
226 |
+
" content: \"▸\";\n",
|
227 |
+
" float: left;\n",
|
228 |
+
" margin-right: 0.25em;\n",
|
229 |
+
" color: var(--sklearn-color-icon);\n",
|
230 |
+
"}\n",
|
231 |
+
"\n",
|
232 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
|
233 |
+
" color: var(--sklearn-color-text);\n",
|
234 |
+
"}\n",
|
235 |
+
"\n",
|
236 |
+
"/* Toggleable content - dropdown */\n",
|
237 |
+
"\n",
|
238 |
+
"#sk-container-id-1 div.sk-toggleable__content {\n",
|
239 |
+
" max-height: 0;\n",
|
240 |
+
" max-width: 0;\n",
|
241 |
+
" overflow: hidden;\n",
|
242 |
+
" text-align: left;\n",
|
243 |
+
" /* unfitted */\n",
|
244 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
245 |
+
"}\n",
|
246 |
+
"\n",
|
247 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
|
248 |
+
" /* fitted */\n",
|
249 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
250 |
+
"}\n",
|
251 |
+
"\n",
|
252 |
+
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
|
253 |
+
" margin: 0.2em;\n",
|
254 |
+
" border-radius: 0.25em;\n",
|
255 |
+
" color: var(--sklearn-color-text);\n",
|
256 |
+
" /* unfitted */\n",
|
257 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
258 |
+
"}\n",
|
259 |
+
"\n",
|
260 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
|
261 |
+
" /* unfitted */\n",
|
262 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
263 |
+
"}\n",
|
264 |
+
"\n",
|
265 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
266 |
+
" /* Expand drop-down */\n",
|
267 |
+
" max-height: 200px;\n",
|
268 |
+
" max-width: 100%;\n",
|
269 |
+
" overflow: auto;\n",
|
270 |
+
"}\n",
|
271 |
+
"\n",
|
272 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
273 |
+
" content: \"▾\";\n",
|
274 |
+
"}\n",
|
275 |
+
"\n",
|
276 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
277 |
+
"\n",
|
278 |
+
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
279 |
+
" color: var(--sklearn-color-text);\n",
|
280 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
281 |
+
"}\n",
|
282 |
+
"\n",
|
283 |
+
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
284 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
285 |
+
"}\n",
|
286 |
+
"\n",
|
287 |
+
"/* Estimator-specific style */\n",
|
288 |
+
"\n",
|
289 |
+
"/* Colorize estimator box */\n",
|
290 |
+
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
291 |
+
" /* unfitted */\n",
|
292 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
293 |
+
"}\n",
|
294 |
+
"\n",
|
295 |
+
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
296 |
+
" /* fitted */\n",
|
297 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
298 |
+
"}\n",
|
299 |
+
"\n",
|
300 |
+
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
|
301 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
302 |
+
" /* The background is the default theme color */\n",
|
303 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
304 |
+
"}\n",
|
305 |
+
"\n",
|
306 |
+
"/* On hover, darken the color of the background */\n",
|
307 |
+
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
|
308 |
+
" color: var(--sklearn-color-text);\n",
|
309 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
310 |
+
"}\n",
|
311 |
+
"\n",
|
312 |
+
"/* Label box, darken color on hover, fitted */\n",
|
313 |
+
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
314 |
+
" color: var(--sklearn-color-text);\n",
|
315 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
316 |
+
"}\n",
|
317 |
+
"\n",
|
318 |
+
"/* Estimator label */\n",
|
319 |
+
"\n",
|
320 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
321 |
+
" font-family: monospace;\n",
|
322 |
+
" font-weight: bold;\n",
|
323 |
+
" display: inline-block;\n",
|
324 |
+
" line-height: 1.2em;\n",
|
325 |
+
"}\n",
|
326 |
+
"\n",
|
327 |
+
"#sk-container-id-1 div.sk-label-container {\n",
|
328 |
+
" text-align: center;\n",
|
329 |
+
"}\n",
|
330 |
+
"\n",
|
331 |
+
"/* Estimator-specific */\n",
|
332 |
+
"#sk-container-id-1 div.sk-estimator {\n",
|
333 |
+
" font-family: monospace;\n",
|
334 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
335 |
+
" border-radius: 0.25em;\n",
|
336 |
+
" box-sizing: border-box;\n",
|
337 |
+
" margin-bottom: 0.5em;\n",
|
338 |
+
" /* unfitted */\n",
|
339 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
340 |
+
"}\n",
|
341 |
+
"\n",
|
342 |
+
"#sk-container-id-1 div.sk-estimator.fitted {\n",
|
343 |
+
" /* fitted */\n",
|
344 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
345 |
+
"}\n",
|
346 |
+
"\n",
|
347 |
+
"/* on hover */\n",
|
348 |
+
"#sk-container-id-1 div.sk-estimator:hover {\n",
|
349 |
+
" /* unfitted */\n",
|
350 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
351 |
+
"}\n",
|
352 |
+
"\n",
|
353 |
+
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
|
354 |
+
" /* fitted */\n",
|
355 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
356 |
+
"}\n",
|
357 |
+
"\n",
|
358 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
359 |
+
"\n",
|
360 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
361 |
+
"\n",
|
362 |
+
".sk-estimator-doc-link,\n",
|
363 |
+
"a:link.sk-estimator-doc-link,\n",
|
364 |
+
"a:visited.sk-estimator-doc-link {\n",
|
365 |
+
" float: right;\n",
|
366 |
+
" font-size: smaller;\n",
|
367 |
+
" line-height: 1em;\n",
|
368 |
+
" font-family: monospace;\n",
|
369 |
+
" background-color: var(--sklearn-color-background);\n",
|
370 |
+
" border-radius: 1em;\n",
|
371 |
+
" height: 1em;\n",
|
372 |
+
" width: 1em;\n",
|
373 |
+
" text-decoration: none !important;\n",
|
374 |
+
" margin-left: 1ex;\n",
|
375 |
+
" /* unfitted */\n",
|
376 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
377 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
378 |
+
"}\n",
|
379 |
+
"\n",
|
380 |
+
".sk-estimator-doc-link.fitted,\n",
|
381 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
382 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
383 |
+
" /* fitted */\n",
|
384 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
385 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
386 |
+
"}\n",
|
387 |
+
"\n",
|
388 |
+
"/* On hover */\n",
|
389 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
390 |
+
".sk-estimator-doc-link:hover,\n",
|
391 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
392 |
+
".sk-estimator-doc-link:hover {\n",
|
393 |
+
" /* unfitted */\n",
|
394 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
395 |
+
" color: var(--sklearn-color-background);\n",
|
396 |
+
" text-decoration: none;\n",
|
397 |
+
"}\n",
|
398 |
+
"\n",
|
399 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
400 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
401 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
402 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
403 |
+
" /* fitted */\n",
|
404 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
405 |
+
" color: var(--sklearn-color-background);\n",
|
406 |
+
" text-decoration: none;\n",
|
407 |
+
"}\n",
|
408 |
+
"\n",
|
409 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
410 |
+
".sk-estimator-doc-link span {\n",
|
411 |
+
" display: none;\n",
|
412 |
+
" z-index: 9999;\n",
|
413 |
+
" position: relative;\n",
|
414 |
+
" font-weight: normal;\n",
|
415 |
+
" right: .2ex;\n",
|
416 |
+
" padding: .5ex;\n",
|
417 |
+
" margin: .5ex;\n",
|
418 |
+
" width: min-content;\n",
|
419 |
+
" min-width: 20ex;\n",
|
420 |
+
" max-width: 50ex;\n",
|
421 |
+
" color: var(--sklearn-color-text);\n",
|
422 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
423 |
+
" /* unfitted */\n",
|
424 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
425 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
426 |
+
"}\n",
|
427 |
+
"\n",
|
428 |
+
".sk-estimator-doc-link.fitted span {\n",
|
429 |
+
" /* fitted */\n",
|
430 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
431 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
432 |
+
"}\n",
|
433 |
+
"\n",
|
434 |
+
".sk-estimator-doc-link:hover span {\n",
|
435 |
+
" display: block;\n",
|
436 |
+
"}\n",
|
437 |
+
"\n",
|
438 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
439 |
+
"\n",
|
440 |
+
"#sk-container-id-1 a.estimator_doc_link {\n",
|
441 |
+
" float: right;\n",
|
442 |
+
" font-size: 1rem;\n",
|
443 |
+
" line-height: 1em;\n",
|
444 |
+
" font-family: monospace;\n",
|
445 |
+
" background-color: var(--sklearn-color-background);\n",
|
446 |
+
" border-radius: 1rem;\n",
|
447 |
+
" height: 1rem;\n",
|
448 |
+
" width: 1rem;\n",
|
449 |
+
" text-decoration: none;\n",
|
450 |
+
" /* unfitted */\n",
|
451 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
452 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
453 |
+
"}\n",
|
454 |
+
"\n",
|
455 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
|
456 |
+
" /* fitted */\n",
|
457 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
458 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
459 |
+
"}\n",
|
460 |
+
"\n",
|
461 |
+
"/* On hover */\n",
|
462 |
+
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
|
463 |
+
" /* unfitted */\n",
|
464 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
465 |
+
" color: var(--sklearn-color-background);\n",
|
466 |
+
" text-decoration: none;\n",
|
467 |
+
"}\n",
|
468 |
+
"\n",
|
469 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
|
470 |
+
" /* fitted */\n",
|
471 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
472 |
+
"}\n",
|
473 |
+
"</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>TfidfVectorizer(max_df=0.95, max_features=2000, min_df=0.1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> TfidfVectorizer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html\">?<span>Documentation for TfidfVectorizer</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>TfidfVectorizer(max_df=0.95, max_features=2000, min_df=0.1)</pre></div> </div></div></div></div>"
|
474 |
+
],
|
475 |
+
"text/plain": [
|
476 |
+
"TfidfVectorizer(max_df=0.95, max_features=2000, min_df=0.1)"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
"execution_count": 9,
|
480 |
+
"metadata": {},
|
481 |
+
"output_type": "execute_result"
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"source": [
|
485 |
+
"tfidf_model"
|
486 |
+
]
|
487 |
+
}
|
488 |
+
],
|
489 |
+
"metadata": {
|
490 |
+
"kernelspec": {
|
491 |
+
"display_name": "mlops",
|
492 |
+
"language": "python",
|
493 |
+
"name": "python3"
|
494 |
+
},
|
495 |
+
"language_info": {
|
496 |
+
"codemirror_mode": {
|
497 |
+
"name": "ipython",
|
498 |
+
"version": 3
|
499 |
+
},
|
500 |
+
"file_extension": ".py",
|
501 |
+
"mimetype": "text/x-python",
|
502 |
+
"name": "python",
|
503 |
+
"nbconvert_exporter": "python",
|
504 |
+
"pygments_lexer": "ipython3",
|
505 |
+
"version": "3.11.7"
|
506 |
+
}
|
507 |
+
},
|
508 |
+
"nbformat": 4,
|
509 |
+
"nbformat_minor": 2
|
510 |
+
}
|
src/app/utils/__init__.py
ADDED
File without changes
|
src/app/utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (167 Bytes). View file
|
|
src/app/utils/__pycache__/log_model.cpython-311.pyc
ADDED
Binary file (4.4 kB). View file
|
|
src/app/utils/__pycache__/text_features.cpython-311.pyc
ADDED
Binary file (4.43 kB). View file
|
|
src/app/utils/__pycache__/text_processing.cpython-311.pyc
ADDED
Binary file (9.83 kB). View file
|
|
src/app/utils/download_model.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def pipeline_download_models():
|
2 |
+
"""
|
3 |
+
This function downloads the models from the mlflow server and saves them in the models folder
|
4 |
+
|
5 |
+
Args:
|
6 |
+
None
|
7 |
+
|
8 |
+
Returns:
|
9 |
+
None
|
10 |
+
"""
|
11 |
+
load_dotenv('../../.env')
|
12 |
+
# download the tf-idf model
|
13 |
+
tfidf_logged_model = 'runs:/a63128b897bd4f91a06f20939a715b98/tfidf_model'
|
14 |
+
tfidf_model = mlflow.sklearn.load_model(tfidf_logged_model)
|
15 |
+
dump(tfidf_model, '../../models/tfidf_model.joblib')
|
16 |
+
# download the pca model
|
17 |
+
pca_logged_model = 'runs:/a63128b897bd4f91a06f20939a715b98/pca_model'
|
18 |
+
pca_model = mlflow.sklearn.load_model(pca_logged_model)
|
19 |
+
dump(pca_model, '../../models/pca_model.joblib')
|
20 |
+
# download the classifier
|
21 |
+
classifier_logged_model = 'runs:/49483b7a0f95430a8492a448ac13e8d7/random-forest'
|
22 |
+
classifier_model = mlflow.sklearn.load_model(classifier_logged_model)
|
23 |
+
dump(classifier_model, '../../models/classifier_model.joblib')
|
src/app/utils/log_model.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mlflow
|
2 |
+
from datetime import datetime
|
3 |
+
from sklearn.metrics import classification_report
|
4 |
+
|
5 |
+
class LogModel:
|
6 |
+
|
7 |
+
def __init__(self, mlflow_uri : str, mlflow_experiment_name : str, mlflow_run_name : str, X_train, Y_train, X_test, Y_test, model, model_name) -> None:
|
8 |
+
self.mlflow_uri = mlflow_uri
|
9 |
+
self.mlflow_experiment_name = mlflow_experiment_name
|
10 |
+
self.mlflow_run_name = mlflow_run_name
|
11 |
+
self.X_train = X_train
|
12 |
+
self.Y_train = Y_train
|
13 |
+
self.X_test = X_test
|
14 |
+
self.Y_test = Y_test
|
15 |
+
self.model_name = model_name
|
16 |
+
self.model = model
|
17 |
+
# set the mlflow uri
|
18 |
+
mlflow.set_tracking_uri(self.mlflow_uri)
|
19 |
+
mlflow.set_experiment(self.mlflow_experiment_name)
|
20 |
+
|
21 |
+
def evaluate_train_data(self):
|
22 |
+
"""
|
23 |
+
This function evaluates the model on the training data
|
24 |
+
"""
|
25 |
+
self.report1 = classification_report(self.Y_test, self.model.predict(self.X_test), output_dict=True)
|
26 |
+
mlflow.log_metric("accuracy", self.report1.pop("accuracy"))
|
27 |
+
for class_or_avg, metrics_dict in self.report1.items():
|
28 |
+
for metric, value in metrics_dict.items():
|
29 |
+
mlflow.log_metric(class_or_avg + '_' + metric,value)
|
30 |
+
|
31 |
+
def evaluate_test_data(self):
|
32 |
+
"""
|
33 |
+
This function evaluates the model on the test data
|
34 |
+
"""
|
35 |
+
self.report2 = classification_report(self.Y_test, self.model.predict(self.X_test), output_dict=True)
|
36 |
+
mlflow.log_metric("accuracy", self.report2.pop("accuracy"))
|
37 |
+
for class_or_avg, metrics_dict in self.report2.items():
|
38 |
+
for metric, value in metrics_dict.items():
|
39 |
+
mlflow.log_metric(class_or_avg + '_' + metric,value)
|
40 |
+
|
41 |
+
def register_model(self):
|
42 |
+
"""
|
43 |
+
This function register the model created parameters and the model
|
44 |
+
"""
|
45 |
+
params = self.model.get_params()
|
46 |
+
mlflow.log_params(params)
|
47 |
+
mlflow.sklearn.log_model(self.model, self.model_name)
|
48 |
+
|
49 |
+
def fit_transform(self):
|
50 |
+
with mlflow.start_run(run_name = self.mlflow_run_name + " " + datetime.today().strftime("%Y-%m-%d %H:%M:%S")):
|
51 |
+
self.evaluate_train_data()
|
52 |
+
self.evaluate_test_data()
|
53 |
+
self.register_model()
|
54 |
+
mlflow.end_run()
|
55 |
+
print("Model performance over the test dataset")
|
56 |
+
print(self.report2)
|
src/app/utils/text_features.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
2 |
+
import pandas as pd
|
3 |
+
from joblib import dump
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
import mlflow
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
class FeatureTextExtraction:
|
10 |
+
|
11 |
+
def __init__(self, mlflow_uri : str, mlflow_experiment_name : str, mlflow_run_name : str) -> None:
|
12 |
+
self.vectorizer = TfidfVectorizer(max_df=0.95, min_df=0.1, max_features=2000)
|
13 |
+
self.pca = PCA(5, random_state=99)
|
14 |
+
self.mlflow_uri = mlflow_uri
|
15 |
+
self.mlflow_experiment_name = mlflow_experiment_name
|
16 |
+
self.mlflow_run_name = mlflow_run_name
|
17 |
+
# set the mlflow uri
|
18 |
+
mlflow.set_tracking_uri(self.mlflow_uri)
|
19 |
+
mlflow.set_experiment(self.mlflow_experiment_name)
|
20 |
+
|
21 |
+
def fit_tfidf(self, df: pd.DataFrame) -> None:
|
22 |
+
"""
|
23 |
+
This function fits the model to the data
|
24 |
+
|
25 |
+
Args:
|
26 |
+
df: pd.DataFrame: The dataframe containing the data
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
None
|
30 |
+
"""
|
31 |
+
self.df = df
|
32 |
+
self.df = self.df.dropna(subset=["processed_text"])
|
33 |
+
self.matrix = self.vectorizer.fit_transform(df["processed_text"])
|
34 |
+
|
35 |
+
def dimesion_reduction(self) -> pd.DataFrame:
|
36 |
+
"""
|
37 |
+
This function reduces the dimension of the data
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
pd.DataFrame: The dataframe containing the transformed data
|
41 |
+
"""
|
42 |
+
self.reduced_data = self.pca.fit_transform(self.matrix.toarray())
|
43 |
+
# convert to dataframe
|
44 |
+
self.reduced_df = pd.DataFrame(self.reduced_data, columns=["dim1", "dim2", "dim3", "dim4", "dim5"])
|
45 |
+
return self.reduced_df
|
46 |
+
|
47 |
+
def fit_transform(self, df : pd.DataFrame) -> pd.DataFrame:
|
48 |
+
"""
|
49 |
+
This function fits the model to the data
|
50 |
+
|
51 |
+
Args:
|
52 |
+
df: pd.DataFrame: The dataframe containing the data
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
pd.DataFrame: The dataframe containing the transformed data
|
56 |
+
"""
|
57 |
+
with mlflow.start_run(run_name = self.mlflow_run_name + " " + datetime.today().strftime("%Y-%m-%d %H:%M:%S")):
|
58 |
+
# log the parameters of the TF-IDF model
|
59 |
+
self.fit_tfidf(df)
|
60 |
+
# log the model of the TF-IDF model
|
61 |
+
mlflow.sklearn.log_model(self.vectorizer, "tfidf_model")
|
62 |
+
# log the parameters of the PCA model
|
63 |
+
self.data = self.dimesion_reduction()
|
64 |
+
# log the model of the PCA model
|
65 |
+
mlflow.sklearn.log_model(self.pca, "pca_model")
|
66 |
+
# end the run
|
67 |
+
mlflow.end_run()
|
68 |
+
# delete the parameters
|
69 |
+
self.final_df = pd.concat([self.df, self.data], axis=1)
|
70 |
+
return self.final_df
|
src/app/utils/text_processing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from nltk.corpus import stopwords
|
2 |
+
from nltk.stem import WordNetLemmatizer
|
3 |
+
import pandas as pd
|
4 |
+
from nltk.stem import PorterStemmer
|
5 |
+
import re
|
6 |
+
|
7 |
+
|
8 |
+
class TextProcessing:
|
9 |
+
"""
|
10 |
+
This class contains all methods to process text data.
|
11 |
+
"""
|
12 |
+
def __init__(self, language : str = 'english'):
|
13 |
+
self.list_stopwords = list(set(stopwords.words(language)))
|
14 |
+
self.lemmatizer = WordNetLemmatizer()
|
15 |
+
self.stemmer = PorterStemmer()
|
16 |
+
|
17 |
+
def tokenize(self, text : str) -> list:
|
18 |
+
"""
|
19 |
+
This function takes a string and returns a list of words in the string.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
text : A string of words
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
the tokens
|
26 |
+
"""
|
27 |
+
return text.split()
|
28 |
+
|
29 |
+
def remove_stopwords(self, list_tokens : list) -> list:
|
30 |
+
"""
|
31 |
+
This function removes the stopwords from the list of tokens.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
list_tokens : list of tokens to process
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
list of tokens with the stopwords removed
|
38 |
+
"""
|
39 |
+
return [word for word in list_tokens if word not in self.list_stopwords]
|
40 |
+
|
41 |
+
def lemmatize_tokens(self, list_tokens : list) -> list:
|
42 |
+
"""
|
43 |
+
This function lemmatizes a list of tokens.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
list_tokens : list of tokens
|
47 |
+
lemmatizer : instance of WordNetLemmatizer
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
list of lemmatized tokens
|
51 |
+
"""
|
52 |
+
return [self.lemmatizer.lemmatize(word) for word in list_tokens]
|
53 |
+
|
54 |
+
def steem_tokens(self, list_tokens : list) -> list:
|
55 |
+
"""
|
56 |
+
This function steems a list of tokens.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
list_tokens : list of tokens
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
list of steemed tokens
|
63 |
+
"""
|
64 |
+
return [self.stemmer.stem(word) for word in list_tokens]
|
65 |
+
|
66 |
+
|
67 |
+
def lowercase_tokens(self, list_tokens : list) -> list:
|
68 |
+
""""
|
69 |
+
This function receives a list of tokens and returns a list of tokens in lowercase
|
70 |
+
|
71 |
+
Args:
|
72 |
+
list_tokens: list of strings
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
list of strings
|
76 |
+
"""
|
77 |
+
return [word.lower() for word in list_tokens]
|
78 |
+
|
79 |
+
def remove_short_tokens(self, token_list : list, min_length : int = 3) -> list:
|
80 |
+
"""
|
81 |
+
This function removes words from a list of tokens that are shorter than min_length.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
token_list: list of strings
|
85 |
+
min_length: int, minimum length of the words to keep
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
list of strings
|
89 |
+
"""
|
90 |
+
return [word for word in token_list if len(word) >= min_length]
|
91 |
+
|
92 |
+
def remove_punctuation(self, text : str) -> str:
|
93 |
+
"""
|
94 |
+
This function removes punctuation from a list of tokens.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
token_list: list of strings
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
list of strings
|
101 |
+
"""
|
102 |
+
if isinstance(text, bytes):
|
103 |
+
text = text.decode('utf-8') # Decodificar si es una cadena de bytes
|
104 |
+
text = re.sub(r'[^\w\s]', '', text)
|
105 |
+
text = re.sub(r'\n', '', text)
|
106 |
+
text = re.sub(r'\d', '', text)
|
107 |
+
return text
|
108 |
+
|
109 |
+
def join_tokens_cleaned(self, token_list : list ) -> list:
|
110 |
+
"""
|
111 |
+
This function joins the tokens in a list
|
112 |
+
|
113 |
+
Args:
|
114 |
+
token_list : list of tokens cleaned
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
text : final phrase
|
118 |
+
"""
|
119 |
+
return " ".join(token_list)
|
120 |
+
|
121 |
+
def fit_transform(self, df : pd.DataFrame) -> pd.DataFrame:
|
122 |
+
"""
|
123 |
+
This function receives a dataframe and applies the text processing methods to the text column.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
df : pandas DataFrame with a column named 'text'
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
df : pandas DataFrame with a column named 'processed_text'
|
130 |
+
"""
|
131 |
+
df['text'] = df['text'].apply(lambda x: self.remove_punctuation(x))
|
132 |
+
df['processed_text'] = df['text'].apply(lambda x: self.tokenize(x))
|
133 |
+
df['processed_text'] = df['processed_text'].apply(lambda x: self.lowercase_tokens(x))
|
134 |
+
df['processed_text'] = df['processed_text'].apply(lambda x: self.remove_stopwords(x))
|
135 |
+
df['processed_text'] = df['processed_text'].apply(lambda x: self.remove_short_tokens(x))
|
136 |
+
df['processed_text'] = df['processed_text'].apply(lambda x: self.steem_tokens(x))
|
137 |
+
df['processed_text'] = df['processed_text'].apply(lambda x: self.join_tokens_cleaned(x))
|
138 |
+
|
139 |
+
return df
|
140 |
+
|
141 |
+
def fit_transform_text(self, text):
|
142 |
+
"""
|
143 |
+
This function receives a string and applies the text processing methods to it.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
text : list with raw texts
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
text : list with curated texts
|
150 |
+
"""
|
151 |
+
text = self.remove_punctuation(text)
|
152 |
+
text = self.tokenize(text)
|
153 |
+
text = self.lowercase_tokens(text)
|
154 |
+
text = self.remove_stopwords(text)
|
155 |
+
text = self.remove_short_tokens(text)
|
156 |
+
text = self.steem_tokens(text)
|
157 |
+
text = self.join_tokens_cleaned(text)
|
158 |
+
return text
|
159 |
+
|
160 |
+
|
src/app/xai.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import sys
|
4 |
+
from lime.lime_text import LimeTextExplainer
|
5 |
+
|
6 |
+
|
7 |
+
from pipelines import pipeline_inference
|
8 |
+
|
9 |
+
def f(x):
|
10 |
+
results = np.zeros((len(x), 2)) # Asumiendo que num_classes es la cantidad de clases en tu problema
|
11 |
+
for i, element in enumerate(x):
|
12 |
+
predictions = pipeline_inference(element)
|
13 |
+
results[i, :] = predictions
|
14 |
+
return results
|
15 |
+
|
16 |
+
|
17 |
+
def get_explanation(text):
|
18 |
+
explainer = LimeTextExplainer(class_names=["Human", "AI"])
|
19 |
+
explanation = explainer.explain_instance(
|
20 |
+
text_instance = text,
|
21 |
+
classifier_fn = f,
|
22 |
+
num_features=30,
|
23 |
+
num_samples = 10
|
24 |
+
)
|
25 |
+
a = explanation.as_list()
|
26 |
+
result = {element[0]: element[1] for element in a}
|
27 |
+
return result
|