File size: 6,864 Bytes
d4539da
37bc974
 
 
d4539da
 
b219614
0fffd32
1349ceb
 
 
 
 
 
b219614
1349ceb
 
b219614
1349ceb
 
b219614
 
1349ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b219614
 
1349ceb
 
b219614
1349ceb
599f010
1349ceb
 
 
 
0fffd32
 
 
 
 
 
 
 
 
 
d4539da
0fffd32
 
 
d4539da
0fffd32
 
d4539da
0fffd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4539da
 
0fffd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Return the combined report content and all output files
    combined_content = "\n\n---\n\n".join(individual_reports)
    if len(individual_reports) > 1 and 'comparative_report' in locals():
        combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"
    
    return combined_content, output_files, "✅ Analysis completed successfully!"

# Wrapper function for Gradio interface
def process_dashboard(api_key, pdf_files, language_name, goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
    """Process dashboard PDFs and generate reports (wrapper function for Gradio interface)."""
    # Start a thread to update progress
    progress_thread = threading.Thread(target=update_progress)
    progress_thread.daemon = True
    progress_thread.start()
    
    # Convert language name to language code
    language_code = "en"  # Default to English
    for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
        if lang_data['name'].lower() == language_name.lower():
            language_code = lang_data['code']
            break
    
    # Get the PDF file bytes
    pdf_bytes_list = []
    if pdf_files is not None:
        for pdf_file in pdf_files:
            if isinstance(pdf_file, dict) and 'name' in pdf_file:
                # Handle newer Gradio File component format
                with open(pdf_file['name'], 'rb') as f:
                    pdf_bytes_list.append(f.read())
            elif isinstance(pdf_file, str):
                # Handle older Gradio File component format
                with open(pdf_file, 'rb') as f:
                    pdf_bytes_list.append(f.read())
            else:
                # Just try to handle whatever format we got
                try:
                    if hasattr(pdf_file, 'read'):
                        pdf_bytes_list.append(pdf_file.read())
                except Exception as e:
                    print(f"Error reading PDF file: {str(e)}")
    
    # Call the actual processing function
    try:
        combined_content, output_files, status = process_multiple_dashboards(
            api_key=api_key,
            pdf_files=pdf_bytes_list,
            language_code=language_code,
            goal_description=goal_description,
            num_sections=num_sections,
            model_name=model_name,
            custom_model=custom_model
        )
        return combined_content, output_files, status
    except Exception as e:
        error_message = f"Error processing dashboards: {str(e)}"
        print(error_message)
        progress_tracker.update(100, error_message)
        progress_tracker.end_processing()
        return None, None, error_message

# Gradio Interface Functions
def toggle_custom_model(choice):
    """Toggle visibility of custom model input based on selection."""
    return {"visible": choice == "custom"}

def refresh_models(api_key):
    """Refresh the list of available models based on the API key."""
    if not api_key:
        return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
    
    try:
        available_models = get_available_models(api_key)
        return gr.Dropdown(choices=available_models, value=DEFAULT_MODEL)
    except Exception as e:
        print(f"Error refreshing models: {str(e)}")
        return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)

# Define the Gradio interface
with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 📊 Dashboard Narrator - Powered by OpenRouter.ai
    Unlock the hidden stories in your dashboards!<br>
    Dashboard Narrator leverages advanced AI models through OpenRouter.ai to dissect your PDF reports,<br> 
    analyze each segment with expert precision, and craft comprehensive insights in your preferred language.<br><br>
    Turn complex data visualizations into clear, strategic recommendations and uncover trends you might have missed.<br>
    From executive summaries to detailed breakdowns, get the full narrative behind your numbers in just a few clicks.<br><br>
    """)
    with gr.Row():
        with gr.Column(scale=1):
            api_key = gr.Textbox(label="OpenRouter API Key", placeholder="Enter your OpenRouter API key...", type="password")
            refresh_btn = gr.Button("🔄 Refresh Available Models", size="sm")
            
            model_choice = gr.Dropdown(
                choices=["custom"] + OPENROUTER_MODELS,
                value=DEFAULT_MODEL,
                label="Select Model"
            )
            
            custom_model = gr.Textbox(
                label="Custom Model ID", 
                placeholder="Enter custom model ID (e.g., anthropic/claude-3-opus:latest)...",
                visible=False
            )
            
            language = gr.Dropdown(
                choices=["Italiano", "English", "Français", "Español", "Deutsch"], 
                value="English", 
                label="Report Language"
            )
            
            num_sections = gr.Slider(
                minimum=2, 
                maximum=10, 
                value=4, 
                step=1, 
                label="Number of Vertical Sections per Dashboard"
            )
            
            goal = gr.Textbox(
                label="Analysis Goal (optional)", 
                placeholder="E.g., Analyze Q1 2024 sales KPIs..."
            )
            
            pdf_files = gr.File(
                label="Upload Dashboards (PDF)", 
                file_types=[".pdf"], 
                file_count="multiple"
            )
            
            analyze_btn = gr.Button("🔍 Analyze Dashboards", variant="primary")
            
        with gr.Column(scale=2):
            with gr.Tab("Report"):
                output_md = gr.Markdown(label="Analysis Report", value="")
            with gr.Tab("Output Files"):
                output_files = gr.File(label="Download Files")
            output_status = gr.Textbox(label="Progress", placeholder="Upload dashboards and press Analyze...", interactive=False)
            # Progress component doesn't accept label in Gradio 5.21.0
            progress_bar = gr.Progress()
    
    # Handle model dropdown change
    model_choice.change(
        fn=toggle_custom_model,
        inputs=model_choice,
        outputs=custom_model,
    )
    
    # Handle refresh models button
    refresh_btn.click(
        fn=refresh_models,
        inputs=api_key,
        outputs=model_choice,
    )
    
    # Handle analyze button
    analyze_btn.click(
        fn=process_dashboard,
        inputs=[api_key, pdf_files, language, goal, num_sections, model_choice, custom_model],
        outputs=[output_md, output_files, output_status]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()