import gradio as gr from huggingface_hub import InferenceClient import os # Pegando o token da Hugging Face do ambiente HF_TOKEN = os.getenv("HF_TOKEN") # Inicializando o cliente de inferência client = InferenceClient( provider="sambanova", api_key=HF_TOKEN, ) def chatbot_response(user_input): messages = [{"role": "user", "content": user_input}] try: completion = client.chat.completions.create( model="meta-llama/Llama-3.3-70B-Instruct", messages=messages, max_tokens=500, ) return completion.choices[0].message['content'] except Exception as e: return f"Erro ao gerar resposta: {str(e)}" # Criando interface Gradio with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🤖 Llama-70B Chatbot - SambaNova") chatbot = gr.Chatbot() msg = gr.Textbox(placeholder="Digite sua mensagem aqui...") btn = gr.Button("Enviar") def respond(message, chat_history): response = chatbot_response(message) chat_history.append((message, response)) return "", chat_history btn.click(respond, [msg, chatbot], [msg, chatbot]) # Rodando a aplicação if __name__ == "__main__": demo.launch()