Spaces:
Sleeping
Sleeping
Rob Jaret
commited on
Commit
·
1f7fc9d
1
Parent(s):
811fa16
Uploading app.
Browse files- .gitattributes +3 -0
- README.md +14 -0
- app.py +281 -0
- assets/.DS_Store +0 -0
- assets/BirdCalls.mp3 +3 -0
- assets/Chimes.wav +3 -0
- assets/FrenchChildren.wav +3 -0
- assets/GesturesPercStrings.wav +3 -0
- assets/Organ-ND.wav +3 -0
- assets/SilverCaneAbbey-Voices.wav +3 -0
- assets/SingingBowl-OmniMic.wav +3 -0
- assets/SpigotsOfChateauLEtoge.wav +3 -0
- assets/Stylophone.wav +3 -0
- requirements.txt +10 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.m4a filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -10,3 +10,17 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
|
15 |
+
Built using:
|
16 |
+
Mac OS Sequoia 15.5
|
17 |
+
Python 3.12
|
18 |
+
|
19 |
+
Some observations:
|
20 |
+
- If all the parameters can be averaged, the result is usuallly a high pitch squeal or low rumble.
|
21 |
+
|
22 |
+
Outstanding questions for any interested parties:
|
23 |
+
- Since it doesn't work well when all params are compatible, are there some params that shouldn't be averaged to keep the resulting model functional?
|
24 |
+
- Would it make logical sense to reshape the parameters that exist in both models but do not have the same shape so they can be averaged?
|
25 |
+
- Anything else that could make the results sonically more like an average of two models?
|
26 |
+
|
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import huggingface_hub
|
2 |
+
#
|
3 |
+
# paths to various models
|
4 |
+
model_path_configs = {
|
5 |
+
"Humpback Whales": ("Intelligent-Instruments-Lab/rave-models", "humpbacks_pondbrain_b2048_r48000_z20.ts"),
|
6 |
+
"Magnets": ("Intelligent-Instruments-Lab/rave-models", "magnets_b2048_r48000_z8.ts"),
|
7 |
+
"Big Ensemble": ("Intelligent-Instruments-Lab/rave-models", "crozzoli_bigensemblesmusic_18d.ts"),
|
8 |
+
"Bird Dawn Chorus": ("Intelligent-Instruments-Lab/rave-models", "birds_dawnchorus_b2048_r48000_z8.ts"),
|
9 |
+
"Speaking & Singing": ("Intelligent-Instruments-Lab/rave-models", "voice-multi-b2048-r48000-z11.ts"),
|
10 |
+
"Resonator Piano": ("Intelligent-Instruments-Lab/rave-models", "mrp_strengjavera_b2048_r44100_z16.ts"),
|
11 |
+
"Multimbral Guitar": ("Intelligent-Instruments-Lab/rave-models", "guitar_iil_b2048_r48000_z16.ts"),
|
12 |
+
"Organ Archive": ("Intelligent-Instruments-Lab/rave-models", "organ_archive_b2048_r48000_z16.ts"),
|
13 |
+
"Water": ("Intelligent-Instruments-Lab/rave-models", "water_pondbrain_b2048_r48000_z16.ts"),
|
14 |
+
"Brass Sax": ("shuoyang-zheng/jaspers-rave-models", "aam_brass_sax_b2048_r44100_z8_noncausal.ts"),
|
15 |
+
"Speech": ("shuoyang-zheng/jaspers-rave-models", "librispeech100_b2048_r44100_z8_noncausal.ts"),
|
16 |
+
"String": ("shuoyang-zheng/jaspers-rave-models" ,"aam_string_b2048_r44100_z16_noncausal.ts"),
|
17 |
+
"Singer": ("shuoyang-zheng/jaspers-rave-models","gtsinger_b2048_r44100_z16_noncausal.ts"),
|
18 |
+
"Bass": ("shuoyang-zheng/jaspers-rave-models","aam_bass_b2048_r44100_z16_noncausal.ts"),
|
19 |
+
"Drum": ("shuoyang-zheng/jaspers-rave-models","aam_drum_b2048_r44100_z16_noncausal.ts"),
|
20 |
+
"Gtr Picking": ("shuoyang-zheng/jaspers-rave-models","guitar_picking_dm_b2048_r44100_z8_causal.ts"),
|
21 |
+
}
|
22 |
+
|
23 |
+
available_audio_files=[
|
24 |
+
"SilverCaneAbbey-Voices.wav",
|
25 |
+
"Chimes.wav",
|
26 |
+
"FrenchChildren.wav",
|
27 |
+
"Organ-ND.wav",
|
28 |
+
"SpigotsOfChateauLEtoge.wav",
|
29 |
+
"Gestures-PercStrings.wav",
|
30 |
+
"SingingBowl-OmniMic.wav",
|
31 |
+
"BirdCalls.mp3",
|
32 |
+
]
|
33 |
+
|
34 |
+
model_path_config_keys = sorted(model_path_configs)
|
35 |
+
model_paths_cache = {}
|
36 |
+
|
37 |
+
def GetModelPath(model_path_name):
|
38 |
+
model_path = ()
|
39 |
+
|
40 |
+
if model_path_name in model_paths_cache.keys():
|
41 |
+
model_path = model_paths_cache[model_path_name]
|
42 |
+
else:
|
43 |
+
repo_id, filename = model_path_configs[model_path_name]
|
44 |
+
|
45 |
+
model_path = huggingface_hub.hf_hub_download(
|
46 |
+
repo_id =repo_id,
|
47 |
+
filename = filename,
|
48 |
+
cache_dir="../huggingface_hub_cache",
|
49 |
+
force_download=False,
|
50 |
+
)
|
51 |
+
|
52 |
+
print(f"Generated Model Path for {filename}.")
|
53 |
+
model_paths_cache[model_path_name] = model_path
|
54 |
+
|
55 |
+
return model_path
|
56 |
+
|
57 |
+
def saveAudio(file_path, audio):
|
58 |
+
with open(file_path + '.wav', 'wb') as f:
|
59 |
+
f.write(audio.data)
|
60 |
+
|
61 |
+
import torch
|
62 |
+
import pandas as pd
|
63 |
+
import copy
|
64 |
+
import librosa
|
65 |
+
import ast
|
66 |
+
import os
|
67 |
+
|
68 |
+
def AverageRaveModels(rave_a, rave_b, bias = 0):
|
69 |
+
|
70 |
+
r1_ratio = .5
|
71 |
+
r2_ratio = .5
|
72 |
+
|
73 |
+
messages = {}
|
74 |
+
# bias between -1 and 1
|
75 |
+
if abs(bias) <= 1:
|
76 |
+
if bias > 0:
|
77 |
+
r1_ratio = .5 + bias/2
|
78 |
+
r2_ratio = 1.0 - r1_ratio
|
79 |
+
|
80 |
+
rave_temp = rave_a
|
81 |
+
elif bias < 0:
|
82 |
+
r2_ratio = .5 + abs(bias)/2
|
83 |
+
r1_ratio = 1.0 - r2_ratio
|
84 |
+
else:
|
85 |
+
print(f"Unable to apply bias {bias} - bias must be between -1 and 1.")
|
86 |
+
|
87 |
+
# Get state dictionaries of both models
|
88 |
+
rave_a_params = rave_a.state_dict()
|
89 |
+
rave_b_params = rave_b.state_dict()
|
90 |
+
|
91 |
+
# intialize the averaged rave with model_a
|
92 |
+
rave_avg = copy.deepcopy(rave_a)
|
93 |
+
avg = rave_avg.state_dict()
|
94 |
+
|
95 |
+
# for reporting
|
96 |
+
keys_averaged={}
|
97 |
+
keys_not_averaged={}
|
98 |
+
for key in rave_a_params:
|
99 |
+
if key in rave_b_params:
|
100 |
+
try:
|
101 |
+
avg[key] = ((rave_a_params[key] * r1_ratio) + (rave_b_params[key] * r2_ratio))
|
102 |
+
keys_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, "")
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error averaging key {key}: {e}")
|
105 |
+
keys_not_averaged[key]=(key, rave_a_params[key].shape, rave_b_params[key].shape, e)
|
106 |
+
else:
|
107 |
+
print(f"Key {key} not found in rave_b parameters, skipping.")
|
108 |
+
# keys_not_averaged(key)
|
109 |
+
keys_not_averaged[key]=(key, rave_a_params[key].shape, "n/a", "Key not found in rave_b parameters.")
|
110 |
+
|
111 |
+
messages["keys_averaged"] = keys_averaged
|
112 |
+
messages["keys_not_averaged"] = keys_not_averaged
|
113 |
+
|
114 |
+
messages["stats"] = f'Numb Params Averaged: {len(keys_averaged)}\nNumb Params Unable to Average: {len(keys_not_averaged)}\nPercent Averaged: {len(keys_averaged) * 100/(len(keys_not_averaged) + len(keys_averaged)):5.2f}%'
|
115 |
+
|
116 |
+
# Commit the changes
|
117 |
+
rave_avg.load_state_dict(avg)
|
118 |
+
|
119 |
+
return rave_avg, messages
|
120 |
+
|
121 |
+
def GenerateRaveEncDecAudio(model_name_a, model_name_b, audio_file_name, audio_file, sr_multiple=1, bias=0): #audio_file_name="RJM1240-Gestures.wav"
|
122 |
+
|
123 |
+
###############################################
|
124 |
+
# Choose models from filenames dictionary created in previous cell
|
125 |
+
# Note: model_path_a is always used to initialize the averaged model.
|
126 |
+
# Switching them gets different results if the parameters are not all matched.
|
127 |
+
###############################################
|
128 |
+
# Examples - this matches only 21 params, but it sounds like maybe sosme of both are in the result.
|
129 |
+
model_path_a = GetModelPath(model_name_a)
|
130 |
+
model_path_b = GetModelPath(model_name_b)
|
131 |
+
|
132 |
+
# Examples: This has 76 params averaged
|
133 |
+
# model_path_a = model_paths['Water']
|
134 |
+
# model_path_b = model_paths['Organ Archive']
|
135 |
+
|
136 |
+
# Examples: All Params Match but high pitch for averaged version
|
137 |
+
# model_path_a = model_paths['Organ Archive']
|
138 |
+
# model_path_b = model_paths['Multimbral Guitar']
|
139 |
+
#
|
140 |
+
# model_path_a = model_paths['String']
|
141 |
+
# model_path_b = model_paths['Singer']
|
142 |
+
#
|
143 |
+
# Examples - All Params Match but get a lower frequency effect
|
144 |
+
# model_path_a = model_paths['Whale']
|
145 |
+
# model_path_b = model_paths['Water']
|
146 |
+
|
147 |
+
|
148 |
+
#####################################
|
149 |
+
# Set biases between -1 and 1 to bias the result towards one of the models
|
150 |
+
# 0 = no bias; >0 biased towards model_a; <0 = biased towards model_b
|
151 |
+
#####################################
|
152 |
+
# Note: multiple biases not implemented for gradio version
|
153 |
+
biases=[bias]
|
154 |
+
|
155 |
+
####################################
|
156 |
+
# Choose Audio File to encode/decode
|
157 |
+
#####################################
|
158 |
+
# audio_file_name = "RJM1240-Gestures.wav"
|
159 |
+
if audio_file is None:
|
160 |
+
audio_file = os.path.join('assets', audio_file_name)
|
161 |
+
# print("Audio File Name:", audio_file_name)
|
162 |
+
|
163 |
+
|
164 |
+
####################################
|
165 |
+
# Generate Audio Files
|
166 |
+
# Audio files are created in the assets folder
|
167 |
+
generate_audio_files = False
|
168 |
+
|
169 |
+
rave_a = torch.jit.load(model_path_a)
|
170 |
+
rave_b = torch.jit.load(model_path_b)
|
171 |
+
|
172 |
+
# Let's load a sample audio file
|
173 |
+
y, sr = librosa.load(audio_file)
|
174 |
+
|
175 |
+
sr_multiplied = sr * sr_multiple # Adjust sample rate if needed
|
176 |
+
print(f"Audio File Loaded: {audio_file}, sample_rate = {sr}")
|
177 |
+
|
178 |
+
# Convert audio to a PyTorch tensor and reshape it to the
|
179 |
+
# required shape: (batch_size, n_channels, n_samples)
|
180 |
+
audio = torch.from_numpy(y).float()
|
181 |
+
audio = audio.reshape(1, 1, -1)
|
182 |
+
|
183 |
+
messages={}
|
184 |
+
audio_outputs={}
|
185 |
+
for bias in biases:
|
186 |
+
# Average the rave models
|
187 |
+
# rave_avg, numb_params_mod, numb_params_unable_to_mod = AverageRaveModels(rave_a, rave_b, bias=bias)
|
188 |
+
rave_avg, new_msgs = AverageRaveModels(rave_a, rave_b, (-1 * bias))
|
189 |
+
messages |= new_msgs
|
190 |
+
|
191 |
+
# no decode the results back to audio
|
192 |
+
with torch.no_grad():
|
193 |
+
# encode the audio with the new averaged models
|
194 |
+
try:
|
195 |
+
latent_a = rave_a.encode(audio)
|
196 |
+
latent_b = rave_b.encode(audio)
|
197 |
+
latent_avg = rave_avg.encode(audio)
|
198 |
+
|
199 |
+
# decode individual and averaged models
|
200 |
+
decoded_a = rave_a.decode(latent_a)
|
201 |
+
decoded_b = rave_b.decode(latent_b)
|
202 |
+
decoded_avg = rave_avg.decode(latent_avg)
|
203 |
+
audio_outputs[bias] = decoded_avg[0]
|
204 |
+
except:
|
205 |
+
print(f'Bias {bias} generated an error. Removing it from list of biases.')
|
206 |
+
biases.remove(bias)
|
207 |
+
# print(biases)
|
208 |
+
|
209 |
+
model_a_file=model_path_a.rsplit("/")[-1]
|
210 |
+
model_b_file=model_path_b.rsplit("/")[-1]
|
211 |
+
|
212 |
+
# Original Audio
|
213 |
+
original_audio = (sr, y)
|
214 |
+
|
215 |
+
# Decoded Audio
|
216 |
+
print("Encoded and Decoded using original models")
|
217 |
+
model_a_audio = (sr, decoded_a[0].detach().numpy().squeeze())
|
218 |
+
# saveAudio('assets/' + model_a_file[: 7] + '_only.wav', a)
|
219 |
+
|
220 |
+
model_b_audio = (sr, decoded_b[0].detach().numpy().squeeze())
|
221 |
+
# # saveAudio('assets/' + model_b_file[: 7] + '_only.wav', a)
|
222 |
+
|
223 |
+
print("Encoded and Decoded using Averaged Models")
|
224 |
+
print("with Biases: ", biases)
|
225 |
+
print("\nNumber of params able to average:", len(messages["keys_averaged"]))
|
226 |
+
print("Number of params unable to average:", len(messages["keys_not_averaged"]))
|
227 |
+
|
228 |
+
output_file_prefix = f'assets/{model_a_file[: 7]}-{model_b_file[: 7]}_'
|
229 |
+
|
230 |
+
bias = biases[0]
|
231 |
+
averaged_audio = (sr_multiplied, audio_outputs[bias].detach().numpy().squeeze())
|
232 |
+
|
233 |
+
df_averaged = pd.DataFrame(messages['keys_averaged']).transpose() #reset_index(names='Param Key')
|
234 |
+
df_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']
|
235 |
+
|
236 |
+
df_not_averaged = pd.DataFrame(messages["keys_not_averaged"]).transpose()
|
237 |
+
|
238 |
+
# case when all params are averaged
|
239 |
+
if len(df_not_averaged.columns) == 0:
|
240 |
+
data = {'Param Name': [], 'Modeal A Shape': [], 'Model B Shape': [], 'Errors': []}
|
241 |
+
df_not_averaged = pd.DataFrame(data)
|
242 |
+
|
243 |
+
df_not_averaged.columns=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']
|
244 |
+
|
245 |
+
messages["stats"] = f"Model A: {model_name_a}\nModel B: {model_name_b}\nAudio file: {os.path.basename(audio_file)}\nSample Rate Multiple for Averaged Version: {sr_multiple}\n\n" + messages["stats"]
|
246 |
+
|
247 |
+
return original_audio, model_a_audio, model_b_audio, averaged_audio, messages["stats"], df_averaged, df_not_averaged
|
248 |
+
|
249 |
+
import gradio as gr
|
250 |
+
|
251 |
+
waveform_options = gr.WaveformOptions(waveform_color="#01C6FF",
|
252 |
+
waveform_progress_color="#0066B4",
|
253 |
+
skip_length=2,)
|
254 |
+
column_widths=['35%', '20%', '20%', '25%']
|
255 |
+
|
256 |
+
AverageModels = gr.Interface(title="Process Audio Through Averaged Models.",
|
257 |
+
fn=GenerateRaveEncDecAudio,
|
258 |
+
inputs=[
|
259 |
+
gr.Radio(model_path_config_keys, label="Select Model A", value="Multimbral Guitar", container=True),
|
260 |
+
gr.Radio(model_path_config_keys, label="Select Model B", value="Water", container=True),
|
261 |
+
gr.Dropdown(available_audio_files, label="Select from these audio files or upload your own below:", value="SilverCaneAbbey-Voices.wav",container=True),
|
262 |
+
gr.Audio(label="Upload an audio file (wav)", type="filepath", sources=["upload", "microphone"], max_length=60,
|
263 |
+
waveform_options=waveform_options, format='wav'),
|
264 |
+
gr.Radio([.2, .5, .75, 1, 2, 4], label="Sample Rate Multiple (Averaged version only)", value=1, container=True),
|
265 |
+
gr.Slider(label="Bias towards Model A or B", minimum=-1, maximum=1, value=0, step=0.1, container=True),
|
266 |
+
|
267 |
+
],
|
268 |
+
# if no way to pass dictionary, pass separate keys and values and zip them.
|
269 |
+
outputs=[
|
270 |
+
gr.Audio(label="Original Audio", sources=None, waveform_options=waveform_options, interactive=False),
|
271 |
+
gr.Audio(label="Encoded/Decoded through Model A", sources=None, waveform_options=waveform_options,),
|
272 |
+
gr.Audio(label="Encoded/Decoded through Model B", sources=None, waveform_options=waveform_options,),
|
273 |
+
gr.Audio(label="Encoded/Decoded through averaged model", sources=None, waveform_options=waveform_options,),
|
274 |
+
gr.Textbox(label="Stats"),
|
275 |
+
gr.Dataframe(label="Params Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors']),
|
276 |
+
gr.Dataframe(label="Params Not Averaged", show_copy_button="True", scale=100, column_widths=column_widths, headers=['Param Name', 'Model A Shape', 'Model B Shape', 'Errors'])
|
277 |
+
]
|
278 |
+
,fill_width=True
|
279 |
+
)
|
280 |
+
|
281 |
+
AverageModels.launch(max_file_size=10 * gr.FileSize.MB, share=True)
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/BirdCalls.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d38844d6abf337397f58fe4abb33e97a805ab33c570856da6cbeec5e4b3ce6d3
|
3 |
+
size 1054464
|
assets/Chimes.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01f3b697316f78e2fdaa4584fa25cdf66c9e0a2c6a7504e9a7a9cedc8e30a596
|
3 |
+
size 4267712
|
assets/FrenchChildren.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a50753cf3d99baa5ebdefda6972b8f112c39b30eabee74f7b5b1da9c65cd3e2c
|
3 |
+
size 2712908
|
assets/GesturesPercStrings.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d503a73fcb5223744ed421de6d5842945ddc5fcebf6ba5077954854e44e697d1
|
3 |
+
size 9817514
|
assets/Organ-ND.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20d16777d58088f5e7c314bccbff40a142ed54481decbeb0c33f001aef1adbc2
|
3 |
+
size 7310666
|
assets/SilverCaneAbbey-Voices.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a142c9f0e3783e8930d4df3b481a83d2753c97489fc4031b983fbebece2afbf
|
3 |
+
size 2790688
|
assets/SingingBowl-OmniMic.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc0800e4d28b98928f8c8552bfa53f0e57e80ee0a050de78353fdeb2472bc3b
|
3 |
+
size 3677380
|
assets/SpigotsOfChateauLEtoge.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7b5fe1427a61265dbaae9724478b9512b538799b589180ceea900d9051e03c8
|
3 |
+
size 4332398
|
assets/Stylophone.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:419ae9cd13e815ecdab0400c81b744c716346fe9aa9afec0d28a66892ceabbcb
|
3 |
+
size 3851504
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ipykernel==6.29.5
|
2 |
+
numpy==2.2.5
|
3 |
+
transformers==4.51.3
|
4 |
+
torch==2.7.0
|
5 |
+
torchaudio==2.7.0
|
6 |
+
librosa==0.11.0
|
7 |
+
torchinfo @ git+https://github.com/lancelotblanchard/torchinfo@87dd4eb
|
8 |
+
pandas==2.2.3
|
9 |
+
ffmpeg=1.4
|
10 |
+
ffprobe=0.5
|