import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer


MODEL_NAME = "reshinthadith/BashGPTNeo"
def load_model_and_tokenizer(model_name):
    """Adding load_model_and_tokenizer function to keep the model in the memory"""
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    return tokenizer,model

tokenizer,model = load_model_and_tokenizer(MODEL_NAME)

MAX_TOKS = 128
MAX_NEW_TOKS = 128 
def generate_text(prompt):
    prompt = "<english> " + prompt + " <bash>"
    inputs = tokenizer(prompt, truncation=True, return_tensors="pt")
    output_seq = model.generate(
        input_ids=inputs.input_ids, max_length=MAX_TOKS,
        max_new_tokens=MAX_NEW_TOKS,
        do_sample=True, temperature=0.8,
        num_return_sequences=1
    )

    outputs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
    outputs = outputs[0].split("<bash>")[-1]
    return outputs
st.set_page_config(
page_title= "Code Representation Learning",
    
    initial_sidebar_state= "expanded"
    )

st.sidebar.title("Code Representation Learning")
st.sidebar.write("work by Reshinth Adithyan & Aditya Thuruvas")

workflow = st.sidebar.selectbox('select a task', ['Bash Synthesis'])
if workflow == "Bash Synthesis":
    st.title("Program Synthesis for Bash")
    prompt = st.text_input("Natural Language prompt ",'print all the files with ".cpp" extension')
    button = st.button("synthesize")
if button:
    generated_text = generate_text(prompt)
    st.write(generated_text)