Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,52 @@
|
|
1 |
import streamlit as st
|
2 |
-
from langdetect import detect
|
3 |
-
import faiss
|
4 |
-
import torch
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
7 |
-
import numpy as np
|
8 |
import pandas as pd
|
|
|
9 |
import os
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
)
|
59 |
-
return tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
60 |
-
|
61 |
-
st.title("π Multilingual RAG Translator/Answer Bot")
|
62 |
-
st.caption("Ask in Urdu, French, Hindi, etc., and get culturally-aware, context-grounded answers.")
|
63 |
-
|
64 |
-
query = st.text_input("π¬ Enter your question in any supported language:")
|
65 |
-
|
66 |
-
if query:
|
67 |
-
if len(query.strip()) < 3:
|
68 |
-
st.warning("Please enter a more complete question for better results.")
|
69 |
-
else:
|
70 |
-
with st.spinner("Thinking..."):
|
71 |
-
embedder, index, corpus, tokenizer, model = load_resources()
|
72 |
-
lang = detect_lang(query)
|
73 |
-
|
74 |
-
lang_map = {
|
75 |
-
"en": "en_XX", "fr": "fr_XX", "ur": "ur_PK", "hi": "hi_IN",
|
76 |
-
"es": "es_XX", "de": "de_DE", "zh": "zh_CN", "ar": "ar_AR",
|
77 |
-
"ru": "ru_RU", "tr": "tr_TR", "it": "it_IT", "pt": "pt_XX",
|
78 |
-
}
|
79 |
-
|
80 |
-
src_lang = lang_map.get(lang, "en_XX")
|
81 |
-
context = get_top_k_passages(query, embedder, index, corpus)
|
82 |
-
|
83 |
-
if not context:
|
84 |
-
st.error("β οΈ Could not find any relevant context to answer your question.")
|
85 |
-
else:
|
86 |
-
try:
|
87 |
-
answer = generate_answer(query, context, tokenizer, model, src_lang)
|
88 |
-
st.markdown("### π Answer:")
|
89 |
-
st.success(answer)
|
90 |
-
except Exception as e:
|
91 |
-
st.error(f"β οΈ Something went wrong while generating the answer.\n\n{e}")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
import zipfile
|
4 |
import os
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
ZIP_FILE = "xnli-multilingual-nli-dataset.zip"
|
10 |
+
CSV_FILE = "en_test.csv"
|
11 |
+
EXTRACT_FOLDER = "extracted_data"
|
12 |
+
|
13 |
+
# Load and extract ZIP
|
14 |
+
@st.cache_data
|
15 |
+
def extract_and_load():
|
16 |
+
if not os.path.exists(EXTRACT_FOLDER):
|
17 |
+
with zipfile.ZipFile(ZIP_FILE, "r") as zip_ref:
|
18 |
+
zip_ref.extractall(EXTRACT_FOLDER)
|
19 |
+
csv_path = os.path.join(EXTRACT_FOLDER, CSV_FILE)
|
20 |
+
df = pd.read_csv(csv_path).dropna().sample(500)
|
21 |
+
return df[['premise', 'hypothesis', 'label']]
|
22 |
+
|
23 |
+
df = extract_and_load()
|
24 |
+
|
25 |
+
# Load models
|
26 |
+
nli_model = pipeline("text-classification", model="joeddav/xlm-roberta-large-xnli")
|
27 |
+
embedder = SentenceTransformer("sentence-transformers/distiluse-base-multilingual-cased-v2")
|
28 |
+
|
29 |
+
# UI
|
30 |
+
st.title("π Multilingual RAG-style NLI Explorer")
|
31 |
+
st.markdown("Enter a sentence in **any language**, and the app will find a related statement from the dataset and infer their relationship.")
|
32 |
+
|
33 |
+
user_input = st.text_input("Enter your **hypothesis** (your own sentence):")
|
34 |
+
|
35 |
+
if user_input:
|
36 |
+
with st.spinner("Finding most relevant premise..."):
|
37 |
+
premise_embeddings = embedder.encode(df['premise'].tolist(), convert_to_tensor=True)
|
38 |
+
user_embedding = embedder.encode(user_input, convert_to_tensor=True)
|
39 |
+
|
40 |
+
top_hit = util.semantic_search(user_embedding, premise_embeddings, top_k=1)[0][0]
|
41 |
+
match_idx = top_hit['corpus_id']
|
42 |
+
selected_premise = df.iloc[match_idx]['premise']
|
43 |
+
|
44 |
+
st.subheader("π Most Relevant Premise:")
|
45 |
+
st.write(selected_premise)
|
46 |
+
|
47 |
+
# Run NLI classification
|
48 |
+
full_input = f"{selected_premise} </s> {user_input}"
|
49 |
+
result = nli_model(full_input)[0]
|
50 |
+
|
51 |
+
st.subheader("π§ Predicted Relationship:")
|
52 |
+
st.write(f"**{result['label']}** (confidence: {result['score']:.2f})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|