Spaces:
Running
on
L4
Running
on
L4
initital
Browse files- README.md +1 -1
- app.py +158 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: ๐
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
|
|
1 |
---
|
2 |
+
title: V-JEPA 2 - Streaming Video Classification
|
3 |
emoji: ๐
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from fastrtc import Stream, VideoStreamHandler, AdditionalOutputs
|
8 |
+
from transformers import VJEPA2ForVideoClassification, AutoVideoProcessor
|
9 |
+
|
10 |
+
|
11 |
+
CHECKPOINT = "qubvel-hf/vjepa2-vitl-fpc16-256-ssv2"
|
12 |
+
TORCH_DTYPE = torch.float16
|
13 |
+
TORCH_DEVICE = "cuda"
|
14 |
+
UPDATE_EVERY_N_FRAMES = 64
|
15 |
+
|
16 |
+
|
17 |
+
def add_text_on_image(image, text):
|
18 |
+
|
19 |
+
# Add a black background to the text
|
20 |
+
image[:70] = 0
|
21 |
+
|
22 |
+
line_spacing = 10
|
23 |
+
top_margin = 20
|
24 |
+
|
25 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
26 |
+
font_scale = 0.5
|
27 |
+
thickness = 1
|
28 |
+
color = (255, 255, 255) # White
|
29 |
+
|
30 |
+
words = text.split()
|
31 |
+
lines = []
|
32 |
+
current_line = ""
|
33 |
+
|
34 |
+
img_width = image.shape[1]
|
35 |
+
|
36 |
+
# Build lines that fit within the image width
|
37 |
+
for word in words:
|
38 |
+
test_line = current_line + (" " if current_line else "") + word
|
39 |
+
(test_width, _), _ = cv2.getTextSize(test_line, font, font_scale, thickness)
|
40 |
+
if test_width > img_width - 20: # 20 px margin
|
41 |
+
lines.append(current_line)
|
42 |
+
current_line = word
|
43 |
+
else:
|
44 |
+
current_line = test_line
|
45 |
+
if current_line:
|
46 |
+
lines.append(current_line)
|
47 |
+
|
48 |
+
# Draw each line, centered
|
49 |
+
y = top_margin
|
50 |
+
for line in lines:
|
51 |
+
(line_width, line_height), _ = cv2.getTextSize(line, font, font_scale, thickness)
|
52 |
+
x = (img_width - line_width) // 2
|
53 |
+
cv2.putText(image, line, (x, y + line_height), font, font_scale, color, thickness, cv2.LINE_AA)
|
54 |
+
y += line_height + line_spacing
|
55 |
+
|
56 |
+
return image
|
57 |
+
|
58 |
+
|
59 |
+
class RunningFramesCache:
|
60 |
+
|
61 |
+
def __init__(self, save_every_k_frame: int = 1, max_frames: int = 16):
|
62 |
+
self.save_every_k_frame = save_every_k_frame
|
63 |
+
self.max_frames = max_frames
|
64 |
+
self._frames = []
|
65 |
+
|
66 |
+
def add_frame(self, frame: np.ndarray):
|
67 |
+
self._frames.append(frame)
|
68 |
+
if len(self._frames) > self.max_frames:
|
69 |
+
self._frames.pop(0)
|
70 |
+
|
71 |
+
def get_frames(self) -> list[np.ndarray]:
|
72 |
+
return self._frames
|
73 |
+
|
74 |
+
def __len__(self) -> int:
|
75 |
+
return len(self._frames)
|
76 |
+
|
77 |
+
|
78 |
+
class RunningResult:
|
79 |
+
|
80 |
+
def __init__(self, max_predictions: int = 4):
|
81 |
+
self.predictions = []
|
82 |
+
self.max_predictions = max_predictions
|
83 |
+
|
84 |
+
def add_prediction(self, prediction: str):
|
85 |
+
# add time in a format of HH:MM:SS
|
86 |
+
current_time_formatted = time.strftime("%H:%M:%S", time.gmtime(time.time()))
|
87 |
+
self.predictions.append((current_time_formatted, prediction))
|
88 |
+
if len(self.predictions) > self.max_predictions:
|
89 |
+
self.predictions.pop(0)
|
90 |
+
|
91 |
+
def get_formatted_predictions(self) -> str:
|
92 |
+
if not self.predictions:
|
93 |
+
return "Starting..."
|
94 |
+
|
95 |
+
current, *past = self.predictions[::-1]
|
96 |
+
text = f">>> {current[1]}\n\n" + "\n".join([
|
97 |
+
f"[{time_formatted}] {prediction}"
|
98 |
+
for time_formatted, prediction in past
|
99 |
+
])
|
100 |
+
return text
|
101 |
+
|
102 |
+
def get_last_prediction(self) -> str:
|
103 |
+
return self.predictions[-1][1] if self.predictions else "Starting..."
|
104 |
+
|
105 |
+
|
106 |
+
class FrameProcessingCallback:
|
107 |
+
def __init__(self):
|
108 |
+
|
109 |
+
# Loading model and processor
|
110 |
+
self.model = VJEPA2ForVideoClassification.from_pretrained(
|
111 |
+
CHECKPOINT, torch_dtype=torch.bfloat16
|
112 |
+
).to(TORCH_DEVICE)
|
113 |
+
self.video_processor = AutoVideoProcessor.from_pretrained(CHECKPOINT)
|
114 |
+
|
115 |
+
# Init frames cache
|
116 |
+
self.running_frames_cache = RunningFramesCache(
|
117 |
+
save_every_k_frame=128 / self.model.config.frames_per_clip,
|
118 |
+
max_frames=self.model.config.frames_per_clip,
|
119 |
+
)
|
120 |
+
self.running_result = RunningResult(max_predictions=4)
|
121 |
+
self.frame_count = 0
|
122 |
+
|
123 |
+
def __call__(self, image: np.ndarray):
|
124 |
+
image = np.flip(image, axis=1).copy()
|
125 |
+
self.running_frames_cache.add_frame(image)
|
126 |
+
self.frame_count += 1
|
127 |
+
print(f"Frame {self.frame_count}, n frames: {len(self.running_frames_cache)}")
|
128 |
+
|
129 |
+
if self.frame_count % UPDATE_EVERY_N_FRAMES == 0 and len(self.running_frames_cache) == self.model.config.frames_per_clip:
|
130 |
+
# Prepare frames for model
|
131 |
+
frames = self.running_frames_cache.get_frames()
|
132 |
+
frames = np.array(frames)
|
133 |
+
inputs = self.video_processor(frames, device=TORCH_DEVICE, return_tensors="pt").to(dtype=TORCH_DTYPE)
|
134 |
+
|
135 |
+
# Run model
|
136 |
+
with torch.no_grad():
|
137 |
+
logits = self.model(**inputs).logits
|
138 |
+
top_index = logits.argmax(dim=-1).item()
|
139 |
+
class_name = self.model.config.id2label[top_index]
|
140 |
+
self.running_result.add_prediction(class_name)
|
141 |
+
|
142 |
+
formatted_predictions = self.running_result.get_formatted_predictions()
|
143 |
+
last_prediction = self.running_result.get_last_prediction()
|
144 |
+
image = add_text_on_image(image, last_prediction)
|
145 |
+
return image, AdditionalOutputs(formatted_predictions)
|
146 |
+
|
147 |
+
|
148 |
+
stream = Stream(
|
149 |
+
handler=VideoStreamHandler(FrameProcessingCallback(), skip_frames=True),
|
150 |
+
modality="video",
|
151 |
+
mode="send-receive",
|
152 |
+
additional_outputs=[gr.TextArea(label="Actions", value="", lines=5)],
|
153 |
+
additional_outputs_handler=lambda _, output: output,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
stream.ui.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers @ git+https://github.com/huggingface/transformers
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
opencv-python-headless
|
6 |
+
fastrtc>=0.0.28
|