import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import fitz # PyMuPDF
import gradio as gr
import requests
from PIL import Image, ImageDraw, ImageFont
from model import load_model, inference_dots_ocr, inference_dolphin
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']
3. Text Extraction & Formatting Rules:
- Picture: omit the text field
- Formula: format as LaTeX
- Table: format as HTML
- Others: format as Markdown
4. Constraints:
- Use original text, no translation
- Sort elements by human reading order
5. Final Output: Single JSON object
"""
# Load models at startup
models = {
"dots.ocr": load_model("dots.ocr"),
"Dolphin": load_model("Dolphin")
}
# Global state for PDF handling
pdf_cache = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None,
"is_parsed": False,
"results": []
}
# Utility functions
def round_by_factor(number: int, factor: int) -> int:
return round(number / factor) * factor
def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 3136, max_pixels: int = 11289600):
if max(height, width) / min(height, width) > 200:
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels or max_pixels:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
image = image.resize((width, height), Image.LANCZOS)
return image
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
images = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
mat = fitz.Matrix(2.0, 2.0)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
image = Image.open(BytesIO(img_data)).convert('RGB')
images.append(image)
pdf_document.close()
except Exception as e:
print(f"Error loading PDF: {e}")
return []
return images
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
colors = {
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4',
'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7',
'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'
}
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
except Exception:
font = ImageFont.load_default()
try:
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox = item['bbox']
category = item['category']
color = colors.get(category, '#000000')
draw.rectangle(bbox, outline=color, width=2)
label = category
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
label_x = bbox[0]
label_y = max(0, bbox[1] - label_height - 2)
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
except Exception as e:
print(f"Error drawing layout: {e}")
return img_copy
def is_arabic_text(text: str) -> bool:
if not text:
return False
header_pattern = r'^#{1,6}\s+(.+)$'
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
content_text = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
header_match = re.match(header_pattern, line, re.MULTILINE)
if header_match:
content_text.append(header_match.group(1))
continue
if re.match(paragraph_pattern, line, re.MULTILINE):
content_text.append(line)
if not content_text:
return False
combined_text = ' '.join(content_text)
arabic_chars = 0
total_chars = 0
for char in combined_text:
if char.isalpha():
total_chars += 1
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
arabic_chars += 1
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
import base64
markdown_lines = []
try:
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture':
if bbox and len(bbox) == 4:
try:
x1, y1, x2, y2 = [max(0, int(x)) if i < 2 else min(image.width if i % 2 == 0 else image.height, int(x)) for i, x in enumerate(bbox)]
if x2 > x1 and y2 > y1:
cropped_img = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
markdown_lines.append(f'\n')
else:
markdown_lines.append('\n')
except Exception as e:
print(f"Error processing image region: {e}")
markdown_lines.append('\n')
else:
markdown_lines.append('\n')
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table':
if text.strip().startswith('<'):
markdown_lines.append(f"{text}\n")
else:
markdown_lines.append(f"**Table:** {text}\n")
elif category == 'Formula':
if text.strip().startswith('$') or '\\' in text:
markdown_lines.append(f"$$ \n{text}\n $$\n")
else:
markdown_lines.append(f"**Formula:** {text}\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category in ['Page-header', 'Page-footer']:
continue
else:
markdown_lines.append(f"{text}\n")
markdown_lines.append("")
except Exception as e:
print(f"Error converting to markdown: {e}")
return str(layout_data)
return "\n".join(markdown_lines)
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.pdf':
images = load_images_from_pdf(file_path)
if not images:
return None, "Failed to load PDF"
pdf_cache.update({
"images": images,
"current_page": 0,
"total_pages": len(images),
"file_type": "pdf",
"is_parsed": False,
"results": []
})
return images[0], f"Page 1 / {len(images)}"
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
image = Image.open(file_path).convert('RGB')
pdf_cache.update({
"images": [image],
"current_page": 0,
"total_pages": 1,
"file_type": "image",
"is_parsed": False,
"results": []
})
return image, "Page 1 / 1"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
@spaces.GPU()
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
global pdf_cache
if not file_path:
return None, "Please upload a file first.", None
model, processor = models[model_choice]
image, page_info = load_file_for_preview(file_path)
if image is None:
return None, page_info, None
if pdf_cache["file_type"] == "pdf":
all_results = []
for i, img in enumerate(pdf_cache["images"]):
if model_choice == "dots.ocr":
raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens)
try:
layout_data = json.loads(raw_output)
processed_image = draw_layout_on_image(img, layout_data)
markdown_content = layoutjson2md(img, layout_data)
result = {
'processed_image': processed_image,
'markdown_content': markdown_content,
'layout_result': layout_data
}
except Exception:
result = {
'processed_image': img,
'markdown_content': raw_output,
'layout_result': None
}
else: # Dolphin
text = inference_dolphin(model, processor, img)
result = f"## Page {i+1}\n\n{text}" if text else "No text extracted"
all_results.append(result)
pdf_cache["results"] = all_results
pdf_cache["is_parsed"] = True
first_result = all_results[0]
if model_choice == "dots.ocr":
markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content']))
return first_result['processed_image'], markdown_update, first_result['layout_result']
else:
markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result))
return None, markdown_update, None
else:
if model_choice == "dots.ocr":
raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens)
try:
layout_data = json.loads(raw_output)
processed_image = draw_layout_on_image(image, layout_data)
markdown_content = layoutjson2md(image, layout_data)
result = {
'processed_image': processed_image,
'markdown_content': markdown_content,
'layout_result': layout_data
}
except Exception:
result = {
'processed_image': image,
'markdown_content': raw_output,
'layout_result': None
}
pdf_cache["results"] = [result]
else: # Dolphin
text = inference_dolphin(model, processor, image)
result = text if text else "No text extracted"
pdf_cache["results"] = [result]
pdf_cache["is_parsed"] = True
if model_choice == "dots.ocr":
markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content']))
return result['processed_image'], markdown_update, result['layout_result']
else:
markdown_update = gr.update(value=result, rtl=is_arabic_text(result))
return None, markdown_update, None
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
global pdf_cache
ifਮ
if not pdf_cache["images"]:
return None, '
No file loaded
', "No results yet", None, None
if direction == "prev":
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
elif direction == "next":
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
index = pdf_cache["current_page"]
current_image_preview = pdf_cache["images"][index]
page_info_html = f'Page {index + 1} / {pdf_cache["total_pages"]}
'
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
result = pdf_cache["results"][index]
if isinstance(result, dict): # dots.ocr
markdown_content = result.get('markdown_content', 'No content available')
processed_img = result.get('processed_image', None)
layout_json = result.get('layout_result', None)
else: # Dolphin
markdown_content = result
processed_img = None
layout_json = None
else:
markdown_content = "Page not processed yet"
processed_img = None
layout_json = None
markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content))
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
def create_gradio_interface():
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button {
border: none !important;
color: white !important;
font-weight: bold !important;
background-color: blue !important;}
.process-button:hover {
background-color: darkblue !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML("""
Dot●OCR vs Dolphin🐬
Advanced vision-language model for image/PDF to markdown document processing
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Image or PDF",
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
type="filepath"
)
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
with gr.Row():
prev_page_btn = gr.Button("⬅ Previous", size="md")
page_info = gr.HTML('No file loaded
')
next_page_btn = gr.Button("Next ➡", size="md")
model_choice = gr.Radio(
choices=["dots.ocr", "Dolphin"],
label="Select Model",
value="dots.ocr"
)
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
process_btn = gr.Button("🔥 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("Clear Document", variant="secondary")
# Add Examples component
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("✦︎ Processed Image"):
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
with gr.Tab("🀥 Extracted Content"):
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
with gr.Tab("⏲ Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results", value=None)
with gr.Row():
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
def handle_file_upload(file_path):
image, page_info = load_file_for_preview(file_path)
return image, page_info
def clear_all():
global pdf_cache
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
return None, None, 'No file loaded
', None, "Click 'Process Document' to see extracted content...", None
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
process_btn.click(
process_document,
inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels],
outputs=[processed_image, markdown_output, json_output]
)
clear_btn.click(
clear_all,
outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=30).launch(share=False, debug=True, show_error=True)