import spaces import json import math import os import traceback from io import BytesIO from typing import Any, Dict, List, Optional, Tuple import re import fitz # PyMuPDF import gradio as gr import requests from PIL import Image, ImageDraw, ImageFont from model import load_model, inference_dots_ocr, inference_dolphin # Constants MIN_PIXELS = 3136 MAX_PIXELS = 11289600 IMAGE_FACTOR = 28 # Prompts prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. 1. Bbox format: [x1, y1, x2, y2] 2. Layout Categories: ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'] 3. Text Extraction & Formatting Rules: - Picture: omit the text field - Formula: format as LaTeX - Table: format as HTML - Others: format as Markdown 4. Constraints: - Use original text, no translation - Sort elements by human reading order 5. Final Output: Single JSON object """ # Load models at startup models = { "dots.ocr": load_model("dots.ocr"), "Dolphin": load_model("Dolphin") } # Global state for PDF handling pdf_cache = { "images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": [] } # Utility functions def round_by_factor(number: int, factor: int) -> int: return round(number / factor) * factor def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 3136, max_pixels: int = 11289600): if max(height, width) / min(height, width) > 200: raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}") h_bar = max(factor, round_by_factor(height, factor)) w_bar = max(factor, round_by_factor(width, factor)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = round_by_factor(height / beta, factor) w_bar = round_by_factor(width / beta, factor) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = round_by_factor(height * beta, factor) w_bar = round_by_factor(width * beta, factor) return h_bar, w_bar def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None): if isinstance(image_input, str): if image_input.startswith(("http://", "https://")): response = requests.get(image_input) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_input).convert('RGB') elif isinstance(image_input, Image.Image): image = image_input.convert('RGB') else: raise ValueError(f"Invalid image input type: {type(image_input)}") if min_pixels or max_pixels: min_pixels = min_pixels or MIN_PIXELS max_pixels = max_pixels or MAX_PIXELS height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels) image = image.resize((width, height), Image.LANCZOS) return image def load_images_from_pdf(pdf_path: str) -> List[Image.Image]: images = [] try: pdf_document = fitz.open(pdf_path) for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) mat = fitz.Matrix(2.0, 2.0) pix = page.get_pixmap(matrix=mat) img_data = pix.tobytes("ppm") image = Image.open(BytesIO(img_data)).convert('RGB') images.append(image) pdf_document.close() except Exception as e: print(f"Error loading PDF: {e}") return [] return images def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image: img_copy = image.copy() draw = ImageDraw.Draw(img_copy) colors = { 'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055' } try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) except Exception: font = ImageFont.load_default() try: for item in layout_data: if 'bbox' in item and 'category' in item: bbox = item['bbox'] category = item['category'] color = colors.get(category, '#000000') draw.rectangle(bbox, outline=color, width=2) label = category label_bbox = draw.textbbox((0, 0), label, font=font) label_width = label_bbox[2] - label_bbox[0] label_height = label_bbox[3] - label_bbox[1] label_x = bbox[0] label_y = max(0, bbox[1] - label_height - 2) draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color) draw.text((label_x + 2, label_y + 1), label, fill='white', font=font) except Exception as e: print(f"Error drawing layout: {e}") return img_copy def is_arabic_text(text: str) -> bool: if not text: return False header_pattern = r'^#{1,6}\s+(.+)$' paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$' content_text = [] for line in text.split('\n'): line = line.strip() if not line: continue header_match = re.match(header_pattern, line, re.MULTILINE) if header_match: content_text.append(header_match.group(1)) continue if re.match(paragraph_pattern, line, re.MULTILINE): content_text.append(line) if not content_text: return False combined_text = ' '.join(content_text) arabic_chars = 0 total_chars = 0 for char in combined_text: if char.isalpha(): total_chars += 1 if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'): arabic_chars += 1 return total_chars > 0 and (arabic_chars / total_chars) > 0.5 def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: import base64 markdown_lines = [] try: sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) for item in sorted_items: category = item.get('category', '') text = item.get(text_key, '') bbox = item.get('bbox', []) if category == 'Picture': if bbox and len(bbox) == 4: try: x1, y1, x2, y2 = [max(0, int(x)) if i < 2 else min(image.width if i % 2 == 0 else image.height, int(x)) for i, x in enumerate(bbox)] if x2 > x1 and y2 > y1: cropped_img = image.crop((x1, y1, x2, y2)) buffer = BytesIO() cropped_img.save(buffer, format='PNG') img_data = base64.b64encode(buffer.getvalue()).decode() markdown_lines.append(f'\n') else: markdown_lines.append('\n') except Exception as e: print(f"Error processing image region: {e}") markdown_lines.append('\n') else: markdown_lines.append('\n') elif not text: continue elif category == 'Title': markdown_lines.append(f"# {text}\n") elif category == 'Section-header': markdown_lines.append(f"## {text}\n") elif category == 'Text': markdown_lines.append(f"{text}\n") elif category == 'List-item': markdown_lines.append(f"- {text}\n") elif category == 'Table': if text.strip().startswith('<'): markdown_lines.append(f"{text}\n") else: markdown_lines.append(f"**Table:** {text}\n") elif category == 'Formula': if text.strip().startswith('$') or '\\' in text: markdown_lines.append(f"$$ \n{text}\n $$\n") else: markdown_lines.append(f"**Formula:** {text}\n") elif category == 'Caption': markdown_lines.append(f"*{text}*\n") elif category == 'Footnote': markdown_lines.append(f"^{text}^\n") elif category in ['Page-header', 'Page-footer']: continue else: markdown_lines.append(f"{text}\n") markdown_lines.append("") except Exception as e: print(f"Error converting to markdown: {e}") return str(layout_data) return "\n".join(markdown_lines) def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]: global pdf_cache if not file_path or not os.path.exists(file_path): return None, "No file selected" file_ext = os.path.splitext(file_path)[1].lower() try: if file_ext == '.pdf': images = load_images_from_pdf(file_path) if not images: return None, "Failed to load PDF" pdf_cache.update({ "images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": [] }) return images[0], f"Page 1 / {len(images)}" elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: image = Image.open(file_path).convert('RGB') pdf_cache.update({ "images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": [] }) return image, "Page 1 / 1" else: return None, f"Unsupported file format: {file_ext}" except Exception as e: print(f"Error loading file: {e}") return None, f"Error loading file: {str(e)}" @spaces.GPU() def process_document(file_path, model_choice, max_tokens, min_pix, max_pix): global pdf_cache if not file_path: return None, "Please upload a file first.", None model, processor = models[model_choice] image, page_info = load_file_for_preview(file_path) if image is None: return None, page_info, None if pdf_cache["file_type"] == "pdf": all_results = [] for i, img in enumerate(pdf_cache["images"]): if model_choice == "dots.ocr": raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens) try: layout_data = json.loads(raw_output) processed_image = draw_layout_on_image(img, layout_data) markdown_content = layoutjson2md(img, layout_data) result = { 'processed_image': processed_image, 'markdown_content': markdown_content, 'layout_result': layout_data } except Exception: result = { 'processed_image': img, 'markdown_content': raw_output, 'layout_result': None } else: # Dolphin text = inference_dolphin(model, processor, img) result = f"## Page {i+1}\n\n{text}" if text else "No text extracted" all_results.append(result) pdf_cache["results"] = all_results pdf_cache["is_parsed"] = True first_result = all_results[0] if model_choice == "dots.ocr": markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content'])) return first_result['processed_image'], markdown_update, first_result['layout_result'] else: markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result)) return None, markdown_update, None else: if model_choice == "dots.ocr": raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens) try: layout_data = json.loads(raw_output) processed_image = draw_layout_on_image(image, layout_data) markdown_content = layoutjson2md(image, layout_data) result = { 'processed_image': processed_image, 'markdown_content': markdown_content, 'layout_result': layout_data } except Exception: result = { 'processed_image': image, 'markdown_content': raw_output, 'layout_result': None } pdf_cache["results"] = [result] else: # Dolphin text = inference_dolphin(model, processor, image) result = text if text else "No text extracted" pdf_cache["results"] = [result] pdf_cache["is_parsed"] = True if model_choice == "dots.ocr": markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content'])) return result['processed_image'], markdown_update, result['layout_result'] else: markdown_update = gr.update(value=result, rtl=is_arabic_text(result)) return None, markdown_update, None def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]: global pdf_cache ifਮ if not pdf_cache["images"]: return None, '
No file loaded
', "No results yet", None, None if direction == "prev": pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) elif direction == "next": pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1) index = pdf_cache["current_page"] current_image_preview = pdf_cache["images"][index] page_info_html = f'
Page {index + 1} / {pdf_cache["total_pages"]}
' if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]): result = pdf_cache["results"][index] if isinstance(result, dict): # dots.ocr markdown_content = result.get('markdown_content', 'No content available') processed_img = result.get('processed_image', None) layout_json = result.get('layout_result', None) else: # Dolphin markdown_content = result processed_img = None layout_json = None else: markdown_content = "Page not processed yet" processed_img = None layout_json = None markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content)) return current_image_preview, page_info_html, markdown_update, processed_img, layout_json def create_gradio_interface(): css = """ .main-container { max-width: 1400px; margin: 0 auto; } .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } .info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; } .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; } .model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; } .status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; } """ with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: gr.HTML("""

DotOCR vs Dolphin🐬

Advanced vision-language model for image/PDF to markdown document processing

""") with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath" ) image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300) with gr.Row(): prev_page_btn = gr.Button("⬅ Previous", size="md") page_info = gr.HTML('
No file loaded
') next_page_btn = gr.Button("Next ➡", size="md") model_choice = gr.Radio( choices=["dots.ocr", "Dolphin"], label="Select Model", value="dots.ocr" ) with gr.Accordion("Advanced Settings", open=False): max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens") min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels") max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels") process_btn = gr.Button("🔥 Process Document", variant="primary", elem_classes=["process-button"], size="lg") clear_btn = gr.Button("Clear Document", variant="secondary") # Add Examples component examples = gr.Examples( examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"], inputs=file_input, label="Example Documents" ) with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("✦︎ Processed Image"): processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500) with gr.Tab("🀥 Extracted Content"): markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500) with gr.Tab("⏲ Layout JSON"): json_output = gr.JSON(label="Layout Analysis Results", value=None) with gr.Row(): examples = gr.Examples( examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"], inputs=file_input, label="Example Documents" ) def handle_file_upload(file_path): image, page_info = load_file_for_preview(file_path) return image, page_info def clear_all(): global pdf_cache pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []} return None, None, '
No file loaded
', None, "Click 'Process Document' to see extracted content...", None file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info]) prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output]) next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output]) process_btn.click( process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output] ) clear_btn.click( clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output] ) return demo if __name__ == "__main__": demo = create_gradio_interface() demo.queue(max_size=30).launch(share=False, debug=True, show_error=True)