premanth15 commited on
Commit
7a9fafa
·
verified ·
1 Parent(s): 42c52dc

Create app.py

Browse files

GitHub Repository: https://github.com/CapstoneProjectimagecaptioning/image_captioning_transformer

Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel
4
+
5
+ device = 'cpu'
6
+
7
+ # Load the pretrained model, feature extractor, and tokenizer
8
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
9
+ feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
10
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
11
+
12
+ def predict(image, max_length=64, num_beams=4):
13
+ # Process the input image
14
+ image = image.convert('RGB')
15
+ pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
16
+
17
+ # Generate the caption
18
+ caption_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)[0]
19
+
20
+ # Decode and clean the generated caption
21
+ caption = tokenizer.decode(caption_ids, skip_special_tokens=True)
22
+ return caption
23
+
24
+ css = '''
25
+ h1#title {
26
+ text-align: center;
27
+ }
28
+ h3#header {
29
+ text-align: center;
30
+ }
31
+ img#overview {
32
+ max-width: 800px;
33
+ max-height: 600px;
34
+ }
35
+ img#style-image {
36
+ max-width: 1000px;
37
+ max-height: 600px;
38
+ }
39
+ '''
40
+
41
+ demo = gr.Blocks(css=css)
42
+
43
+ with demo:
44
+ gr.Markdown('''<h1 id="title">Automated Image Captioning Using Generative AI: A Transformer based approach 🖼️</h1>''')
45
+ gr.Markdown('Contributed by : Premanth Alahari, Charan Gudivada')
46
+
47
+ with gr.Column():
48
+ input_image = gr.Image(label="Upload your Image", type='pil')
49
+ output_caption = gr.Textbox(label="Generated Caption")
50
+
51
+ btn = gr.Button("Generate Caption")
52
+ btn.click(fn=predict, inputs=input_image, outputs=output_caption)
53
+
54
+ demo.launch()