Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import io
|
6 |
+
import soundfile as sf
|
7 |
+
import os
|
8 |
+
from pydub import AudioSegment
|
9 |
+
|
10 |
+
# Initialize the FastAPI app
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Load the pre-trained model and processor
|
14 |
+
model_name = "facebook/wav2vec2-lv-60-espeak-cv-ft"
|
15 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
16 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Ensure the model is in evaluation mode
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
# Function to convert audio to the required format
|
22 |
+
def convert_audio(audio_bytes):
|
23 |
+
# Load audio from bytes
|
24 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
|
25 |
+
# Set to mono
|
26 |
+
audio = audio.set_channels(1)
|
27 |
+
# Set sample rate to 16kHz
|
28 |
+
audio = audio.set_frame_rate(16000)
|
29 |
+
|
30 |
+
# Export to a buffer
|
31 |
+
buffer = io.BytesIO()
|
32 |
+
audio.export(buffer, format="wav")
|
33 |
+
buffer.seek(0)
|
34 |
+
return buffer.read()
|
35 |
+
|
36 |
+
|
37 |
+
@app.post("/assess-pronunciation/")
|
38 |
+
async def assess_pronunciation(audio_file: UploadFile = File(...)):
|
39 |
+
"""
|
40 |
+
This endpoint takes an audio file and returns the recognized phonemes.
|
41 |
+
"""
|
42 |
+
# Read the audio file content
|
43 |
+
audio_bytes = await audio_file.read()
|
44 |
+
|
45 |
+
# Convert audio to the model's required format (16kHz, mono)
|
46 |
+
processed_audio_bytes = convert_audio(audio_bytes)
|
47 |
+
|
48 |
+
# Load the waveform and sample rate from the processed audio bytes
|
49 |
+
waveform, sample_rate = sf.read(io.BytesIO(processed_audio_bytes), dtype='float32')
|
50 |
+
|
51 |
+
# Ensure the audio is a 1D tensor
|
52 |
+
if waveform.ndim > 1:
|
53 |
+
waveform = waveform.mean(axis=1)
|
54 |
+
|
55 |
+
# Process the audio waveform
|
56 |
+
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt", padding="longest").input_values
|
57 |
+
|
58 |
+
# Perform inference
|
59 |
+
with torch.no_grad():
|
60 |
+
logits = model(input_values).logits
|
61 |
+
|
62 |
+
# Get the predicted IDs and decode them into phonemes
|
63 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
+
transcription = processor.batch_decode(predicted_ids)
|
65 |
+
|
66 |
+
return {"phoneme_transcription": transcription[0]}
|
67 |
+
|
68 |
+
@app.get("/")
|
69 |
+
def read_root():
|
70 |
+
return {"message": "Wav2Vec2 Pronunciation Assessment API is running."}
|