import gradio as gr import os import torch import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import torch.nn.functional as F from huggingface_hub import HfApi from collections import defaultdict from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES, CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES) from .utils import is_disk_full HF_TOKEN = os.environ["hf_read"] languages = [ "Multilingual", ] domains = { "media": "media" } CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values()) CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values()) major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)} minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)} minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)} major_to_minor_map = defaultdict(list) for code in CAP_MIN_CODES: major_id = int(str(code)[:-2]) major_to_minor_map[major_id].append(code) major_to_minor_map = dict(major_to_minor_map) def normalize_probs(probs: dict): min_val = min(probs.values()) max_val = max(probs.values()) range_val = max_val - min_val if range_val == 0: return {k: 1.0 for k in probs} return {k: (v - min_val) / range_val for k, v in probs.items()} def check_huggingface_path(checkpoint_path: str): try: hf_api = HfApi(token=HF_TOKEN) hf_api.model_info(checkpoint_path, token=HF_TOKEN) return True except: return False def build_huggingface_path(language: str, domain: str): return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3") def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None): device = torch.device("cpu") # Load major and minor models + tokenizer major_model = AutoModelForSequenceClassification.from_pretrained( major_model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN ).to(device) minor_model = AutoModelForSequenceClassification.from_pretrained( minor_model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN ).to(device) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) # Predict major topic major_model.eval() with torch.no_grad(): major_logits = major_model(**inputs).logits major_probs = F.softmax(major_logits, dim=-1) major_probs_np = major_probs.cpu().numpy().flatten() top_major_index = int(np.argmax(major_probs_np)) top_major_id = major_index_to_id[top_major_index] # Default: show major topic predictions print(major_probs_np) # debug filtered_probs = { i: float(major_probs_np[i]) for i in np.argsort(major_probs_np)[::-1] } print(filtered_probs) # debug filtered_probs = normalize_probs(filtered_probs) print(filtered_probs) # debug output_pred = { f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[k]}": v for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) } print(output_pred) # debug # If eligible for minor prediction if top_major_id in major_to_minor_map: valid_minor_ids = major_to_minor_map[top_major_id] minor_model.eval() with torch.no_grad(): minor_logits = minor_model(**inputs).logits minor_probs = F.softmax(minor_logits, dim=-1) # Restrict to valid minor codes valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index] filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices} filtered_probs = normalize_probs(filtered_probs) output_pred = { f"[{k}] {CAP_MIN_LABEL_NAMES[k]}": v for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) } output_info = f'

Prediction used {major_model_id} and {minor_model_id}.

' return output_pred, output_info def predict_cap(text, language, domain): domain = domains[domain] major_model_id, minor_model_id = build_huggingface_path(language, domain) tokenizer_id = "xlm-roberta-large" if is_disk_full(): os.system('rm -rf /data/models*') os.system('rm -r ~/.cache/huggingface/hub') return predict(text, major_model_id, minor_model_id, tokenizer_id) demo = gr.Interface( title="CAP Media/Minor Topics Babel Demo", fn=predict_cap, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language"), gr.Dropdown(domains.keys(), label="Domain")], outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])