Spaces:
Running
Running
kovacsvi
commited on
Commit
·
99646de
1
Parent(s):
8d3cc6e
use max length of 64 with padding
Browse files- interfaces/cap_media2.py +2 -2
- interfaces/cap_media_demo.py +2 -2
- interfaces/cap_minor.py +2 -2
- interfaces/cap_minor_media.py +3 -3
- interfaces/emotion.py +2 -2
- interfaces/emotion9.py +2 -2
- interfaces/illframes.py +2 -2
- interfaces/manifesto.py +2 -2
- interfaces/ontolisst.py +2 -2
- interfaces/sentiment.py +2 -2
interfaces/cap_media2.py
CHANGED
@@ -47,9 +47,9 @@ def predict(text, model_id, tokenizer_id):
|
|
47 |
# Tokenize input
|
48 |
inputs = tokenizer(
|
49 |
text,
|
50 |
-
max_length=
|
51 |
truncation=True,
|
52 |
-
padding=
|
53 |
return_tensors="pt"
|
54 |
)
|
55 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
47 |
# Tokenize input
|
48 |
inputs = tokenizer(
|
49 |
text,
|
50 |
+
max_length=64,
|
51 |
truncation=True,
|
52 |
+
padding=True,
|
53 |
return_tensors="pt"
|
54 |
)
|
55 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/cap_media_demo.py
CHANGED
@@ -47,9 +47,9 @@ def predict(text, model_id, tokenizer_id):
|
|
47 |
# Tokenize input
|
48 |
inputs = tokenizer(
|
49 |
text,
|
50 |
-
max_length=
|
51 |
truncation=True,
|
52 |
-
padding=
|
53 |
return_tensors="pt"
|
54 |
)
|
55 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
47 |
# Tokenize input
|
48 |
inputs = tokenizer(
|
49 |
text,
|
50 |
+
max_length=64,
|
51 |
truncation=True,
|
52 |
+
padding=True,
|
53 |
return_tensors="pt"
|
54 |
)
|
55 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/cap_minor.py
CHANGED
@@ -79,9 +79,9 @@ def predict(text, model_id, tokenizer_id):
|
|
79 |
# Tokenize input
|
80 |
inputs = tokenizer(
|
81 |
text,
|
82 |
-
max_length=
|
83 |
truncation=True,
|
84 |
-
padding=
|
85 |
return_tensors="pt"
|
86 |
)
|
87 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
79 |
# Tokenize input
|
80 |
inputs = tokenizer(
|
81 |
text,
|
82 |
+
max_length=64,
|
83 |
truncation=True,
|
84 |
+
padding=True,
|
85 |
return_tensors="pt"
|
86 |
)
|
87 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/cap_minor_media.py
CHANGED
@@ -85,7 +85,7 @@ def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
|
|
85 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
86 |
|
87 |
# Tokenize input
|
88 |
-
inputs = tokenizer(text, max_length=
|
89 |
|
90 |
# Predict major topic
|
91 |
major_model.eval()
|
@@ -162,9 +162,9 @@ def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
|
|
162 |
# Tokenize input
|
163 |
inputs = tokenizer(
|
164 |
text,
|
165 |
-
max_length=
|
166 |
truncation=True,
|
167 |
-
padding=
|
168 |
return_tensors="pt"
|
169 |
)
|
170 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
85 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
86 |
|
87 |
# Tokenize input
|
88 |
+
inputs = tokenizer(text, max_length=64, truncation=True, padding=True, return_tensors="pt").to(device)
|
89 |
|
90 |
# Predict major topic
|
91 |
major_model.eval()
|
|
|
162 |
# Tokenize input
|
163 |
inputs = tokenizer(
|
164 |
text,
|
165 |
+
max_length=64,
|
166 |
truncation=True,
|
167 |
+
padding=True,
|
168 |
return_tensors="pt"
|
169 |
)
|
170 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/emotion.py
CHANGED
@@ -39,9 +39,9 @@ def predict(text, model_id, tokenizer_id):
|
|
39 |
# Tokenize input
|
40 |
inputs = tokenizer(
|
41 |
text,
|
42 |
-
max_length=
|
43 |
truncation=True,
|
44 |
-
padding=
|
45 |
return_tensors="pt"
|
46 |
)
|
47 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
39 |
# Tokenize input
|
40 |
inputs = tokenizer(
|
41 |
text,
|
42 |
+
max_length=64,
|
43 |
truncation=True,
|
44 |
+
padding=True,
|
45 |
return_tensors="pt"
|
46 |
)
|
47 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/emotion9.py
CHANGED
@@ -38,9 +38,9 @@ def predict(text, model_id, tokenizer_id):
|
|
38 |
# Tokenize input
|
39 |
inputs = tokenizer(
|
40 |
text,
|
41 |
-
max_length=
|
42 |
truncation=True,
|
43 |
-
padding=
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
38 |
# Tokenize input
|
39 |
inputs = tokenizer(
|
40 |
text,
|
41 |
+
max_length=64,
|
42 |
truncation=True,
|
43 |
+
padding=True,
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/illframes.py
CHANGED
@@ -70,9 +70,9 @@ def predict(text, model_id, tokenizer_id, label_names):
|
|
70 |
# Tokenize input
|
71 |
inputs = tokenizer(
|
72 |
text,
|
73 |
-
max_length=
|
74 |
truncation=True,
|
75 |
-
padding=
|
76 |
return_tensors="pt"
|
77 |
)
|
78 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
70 |
# Tokenize input
|
71 |
inputs = tokenizer(
|
72 |
text,
|
73 |
+
max_length=64,
|
74 |
truncation=True,
|
75 |
+
padding=True,
|
76 |
return_tensors="pt"
|
77 |
)
|
78 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/manifesto.py
CHANGED
@@ -38,9 +38,9 @@ def predict(text, model_id, tokenizer_id):
|
|
38 |
# Tokenize input
|
39 |
inputs = tokenizer(
|
40 |
text,
|
41 |
-
max_length=
|
42 |
truncation=True,
|
43 |
-
padding=
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
38 |
# Tokenize input
|
39 |
inputs = tokenizer(
|
40 |
text,
|
41 |
+
max_length=64,
|
42 |
truncation=True,
|
43 |
+
padding=True,
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/ontolisst.py
CHANGED
@@ -56,9 +56,9 @@ def predict(text, model_id, tokenizer_id):
|
|
56 |
# Tokenize input
|
57 |
inputs = tokenizer(
|
58 |
text,
|
59 |
-
max_length=
|
60 |
truncation=True,
|
61 |
-
padding=
|
62 |
return_tensors="pt"
|
63 |
)
|
64 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
56 |
# Tokenize input
|
57 |
inputs = tokenizer(
|
58 |
text,
|
59 |
+
max_length=64,
|
60 |
truncation=True,
|
61 |
+
padding=True,
|
62 |
return_tensors="pt"
|
63 |
)
|
64 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
interfaces/sentiment.py
CHANGED
@@ -42,9 +42,9 @@ def predict(text, model_id, tokenizer_id):
|
|
42 |
# Tokenize input
|
43 |
inputs = tokenizer(
|
44 |
text,
|
45 |
-
max_length=
|
46 |
truncation=True,
|
47 |
-
padding=
|
48 |
return_tensors="pt"
|
49 |
)
|
50 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
42 |
# Tokenize input
|
43 |
inputs = tokenizer(
|
44 |
text,
|
45 |
+
max_length=64,
|
46 |
truncation=True,
|
47 |
+
padding=True,
|
48 |
return_tensors="pt"
|
49 |
)
|
50 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|