Spaces:
Running
Running
File size: 9,276 Bytes
4bba8df 8cbc9a3 4bba8df 8869f68 4bba8df 8869f68 471013f 8869f68 4bba8df af93ecc 4bba8df 8869f68 4bba8df 89d4ec8 7a06eab 8cbc9a3 7a06eab 8cbc9a3 89d4ec8 4bba8df 8869f68 a32935f 4bba8df 8869f68 8cbc9a3 d6b06ec 9601263 d6b06ec 8cbc9a3 9211a01 8cbc9a3 1f27218 8cbc9a3 9211a01 8cbc9a3 4bba8df fb1a253 4bba8df fb1a253 8869f68 fb1a253 4bba8df fb1a253 8869f68 fb1a253 8869f68 853f29a 4bba8df 8cbc9a3 9211a01 8cbc9a3 71aee23 2be2888 8cbc9a3 8869f68 4bba8df 8869f68 8cbc9a3 4bba8df 8869f68 8cbc9a3 4bba8df 8869f68 8cbc9a3 4bba8df 8cbc9a3 8869f68 4bba8df 8869f68 8cbc9a3 8869f68 5e4506b 8869f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch.nn.functional as F
from huggingface_hub import HfApi
from collections import defaultdict
from label_dicts import (
CAP_NUM_DICT,
CAP_LABEL_NAMES,
CAP_MIN_NUM_DICT,
CAP_MIN_LABEL_NAMES,
)
from .utils import is_disk_full, release_model
HF_TOKEN = os.environ["hf_read"]
languages = [
"Multilingual",
]
domains = {
"media": "media",
"social media": "social",
"parliamentary speech": "parlspeech",
"legislative documents": "legislative",
"executive speech": "execspeech",
"executive order": "execorder",
"party programs": "party",
"judiciary": "judiciary",
"budget": "budget",
"public opinion": "publicopinion",
"local government agenda": "localgovernment",
}
CAP_MAJOR_CODES = list(CAP_NUM_DICT.values())
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values())
major_index_to_id = {i: code for i, code in enumerate(CAP_MAJOR_CODES)}
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)}
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)}
major_to_minor_map = defaultdict(list)
for code in CAP_MIN_CODES:
major_id = int(str(code)[:-2])
major_to_minor_map[major_id].append(code)
major_to_minor_map = dict(major_to_minor_map)
def normalize_probs(probs: dict) -> dict:
total = sum(probs.values())
return {k: v / total for k, v in probs.items()}
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(language: str, domain: str, hierarchical: bool):
if hierarchical:
major = "poltextlab/xlm-roberta-large-pooled-cap-v3"
minor = (
"poltextlab/xlm-roberta-large-twitter-cap-minor"
if domain == "social"
else "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"
)
return major, minor
return (
"poltextlab/xlm-roberta-large-twitter-cap-minor"
if domain == "social"
else "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"
)
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load major and minor models + tokenizer
major_model = AutoModelForSequenceClassification.from_pretrained(
major_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN,
).to(device)
minor_model = AutoModelForSequenceClassification.from_pretrained(
minor_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text, max_length=64, truncation=True, padding=True, return_tensors="pt"
).to(device)
# Predict major topic
major_model.eval()
with torch.no_grad():
major_logits = major_model(**inputs).logits
major_probs = F.softmax(major_logits, dim=-1)
major_probs_np = major_probs.cpu().numpy().flatten()
top_major_index = int(np.argmax(major_probs_np))
top_major_id = major_index_to_id[top_major_index]
# Default: show major topic predictions
if int(top_major_id) == 999:
filtered_probs = {21:1}
else:
filtered_probs = {
i: float(major_probs_np[i]) for i in np.argsort(major_probs_np)[::-1]
}
filtered_probs = normalize_probs(filtered_probs)
output_pred = {
f"[{major_index_to_id[k]}] {CAP_LABEL_NAMES[major_index_to_id[k]]}": v
for k, v in sorted(
filtered_probs.items(), key=lambda item: item[1], reverse=True
)
}
print(top_major_id) # debug
print(major_to_minor_map) # debug
# If eligible for minor prediction
if top_major_id in major_to_minor_map:
valid_minor_ids = major_to_minor_map[top_major_id]
minor_model.eval()
with torch.no_grad():
minor_logits = minor_model(**inputs).logits
minor_probs = F.softmax(minor_logits, dim=-1)
release_model(major_model, major_model_id)
release_model(minor_model, minor_model_id)
print(minor_probs) # debug
# Restrict to valid minor codes
valid_indices = [
minor_id_to_index[mid]
for mid in valid_minor_ids
if mid in minor_id_to_index
]
filtered_probs = {
minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices
}
print(filtered_probs) # debug
filtered_probs = normalize_probs(filtered_probs)
print(filtered_probs) # debug
output_pred = {
f"[{top_major_id}] {CAP_LABEL_NAMES[top_major_id]} [{k}] {CAP_MIN_LABEL_NAMES[k]}": v
for k, v in sorted(
filtered_probs.items(), key=lambda item: item[1], reverse=True
)
}
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'
interpretation_info = """
## How to Interpret These Values (Hierarchical Classification)
The values are the confidences for minor topics **within a given major topic**, and they are **normalized to sum to 1**.
"""
return interpretation_info, output_pred, output_info
def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text, max_length=64, truncation=True, padding=True, return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
top_indices = np.argsort(probs)[::-1][:10]
output_pred = {}
for i in top_indices:
code = CAP_MIN_NUM_DICT[i]
prob = probs[i]
if code in CAP_LABEL_NAMES:
# Media (major) topic
label = CAP_LABEL_NAMES[code]
display = f"[{code}] {label}"
else:
# Minor topic
major_code = code // 100
major_label = CAP_LABEL_NAMES[major_code]
minor_label = CAP_MIN_LABEL_NAMES[code]
display = f"[{major_code}] {major_label} [{code}] {minor_label}"
output_pred[display] = prob
interpretation_info = """
## How to Interpret These Values (Flat Classification)
This method returns predictions made by a single model. **Only the top 10 most confident labels are displayed**.
"""
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return interpretation_info, output_pred, output_info
def predict_cap(tmp, method, text, language, domain):
if is_disk_full():
os.system("rm -rf /data/models*")
os.system("rm -r ~/.cache/huggingface/hub")
domain = domains[domain]
if method == "Hierarchical Classification":
major_model_id, minor_model_id = build_huggingface_path(language, domain, True)
tokenizer_id = "xlm-roberta-large"
return predict(text, major_model_id, minor_model_id, tokenizer_id)
else:
model_id = build_huggingface_path(language, domain, False)
tokenizer_id = "xlm-roberta-large"
return predict_flat(text, model_id, tokenizer_id)
description = """
You can choose between two approaches for making predictions:
**1. Hierarchical Classification**
First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category.
**2. Flat Classification (single model)**
A single model directly predicts the most relevant label from all available minor topics.
"""
demo = gr.Interface(
title="CAP Minor Topics Babel Demo",
fn=predict_cap,
inputs=[
gr.Markdown(description),
gr.Radio(
choices=["Hierarchical Classification", "Flat Classification"],
label="Prediction Mode",
value="Hierarchical Classification",
),
gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[0]),
gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0]),
],
outputs=[gr.Markdown(), gr.Label(label="Output"), gr.Markdown()],
)
|