pepperumo commited on
Commit
9029bb2
Β·
verified Β·
1 Parent(s): 950110c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -34
app.py CHANGED
@@ -29,7 +29,7 @@ from prediction import (
29
  def overview_page():
30
  col1, col2, col3 = st.columns([1, 6, 1])
31
 
32
- st.title("πŸš€ Beyond Normals: Unveiling Image Anomalies with AI")
33
  st.markdown("---")
34
 
35
  try:
@@ -89,12 +89,7 @@ def overview_page():
89
 
90
  st.subheader("✨ **Bringing Anomalies to Light**: Real-World Examples")
91
  st.write("""
92
- Below are **three real examples** of AI-powered anomaly detection. Each image set follows this pattern:
93
-
94
- πŸ”Ή **First Column**: Original object with an anomaly
95
- πŸ”Ή **Second Column**: AI-generated **heatmap** highlighting the defect
96
- πŸ”Ή **Third Column**: Segmentation mask identifying **defect locations**
97
- πŸ”Ή **Fourth Column**: **Ground truth** (expert-labeled defect areas for verification)
98
  """)
99
 
100
  # Display anomaly detection images directly without additional data processing
@@ -103,42 +98,21 @@ def overview_page():
103
  st.image("images/anomaly_visual_example_3.png", use_container_width=True, caption="Leather - Cut Defect")
104
 
105
  st.write("""
106
- πŸ”΅ **The Heatmap (Second Column)**:
 
 
 
107
  - AI scans the object and **highlights unusual areas** in **red/yellow**, indicating anomaly.
108
 
109
- ⚫ **Segmentation Map (Third Column)**:
110
  - Shows the **exact shape** of the detected anomaly, crucial for precise localization.
111
 
112
- βœ… **Ground Truth (Fourth Column)**:
113
  - The manually labeled anomaly **used for AI validation**.
114
 
115
  This technology helps manufacturers **automate anomaly detection, reduce waste, and ensure top-tier product quality** at an industrial scale. πŸš€
116
  """)
117
 
118
- st.success("🌟 With AI-powered anomaly detection, we bring **precision and automation** to manufacturing quality control! πŸ”βœ¨")
119
-
120
- st.markdown("---")
121
- col1, col2 = st.columns(2)
122
-
123
- with col1:
124
- st.subheader("🎯 Process Pipeline")
125
- st.markdown("""
126
- 1. **Data Collection & Preprocessing**
127
- 2. **Feature Extraction**
128
- 3. **Model Training**
129
- 4. **Anomaly Detection**
130
- 5. **Results Visualization**
131
- """)
132
-
133
- with col2:
134
- st.subheader("πŸ› οΈ Key Technologies")
135
- st.markdown("""
136
- - **Deep Learning**: PyTorch
137
- - **Computer Vision**: OpenCV, PIL
138
- - **Data Analysis**: NumPy, Pandas
139
- - **Visualization**: Plotly, Matplotlib
140
- """)
141
-
142
 
143
  # Dataset Page
144
  def dataset_page():
@@ -406,6 +380,8 @@ def resnet50_page():
406
  Essentially, these **1536 features** act like a summary of the image’s most important elements. πŸ“
407
 
408
  """)
 
 
409
  def models_page():
410
  st.title("πŸ€– Anomaly Detection Models")
411
 
 
29
  def overview_page():
30
  col1, col2, col3 = st.columns([1, 6, 1])
31
 
32
+ st.title("πŸš€ Beyond Normal: Unveiling Image Anomalies with AI")
33
  st.markdown("---")
34
 
35
  try:
 
89
 
90
  st.subheader("✨ **Bringing Anomalies to Light**: Real-World Examples")
91
  st.write("""
92
+ Below are **three real examples** of AI-powered anomaly detection.
 
 
 
 
 
93
  """)
94
 
95
  # Display anomaly detection images directly without additional data processing
 
98
  st.image("images/anomaly_visual_example_3.png", use_container_width=True, caption="Leather - Cut Defect")
99
 
100
  st.write("""
101
+ **First Column**:
102
+ - Original object with an anomaly
103
+
104
+ **The Heatmap (Second Column)**:
105
  - AI scans the object and **highlights unusual areas** in **red/yellow**, indicating anomaly.
106
 
107
+ **Segmentation Map (Third Column)**:
108
  - Shows the **exact shape** of the detected anomaly, crucial for precise localization.
109
 
110
+ **Ground Truth (Fourth Column)**:
111
  - The manually labeled anomaly **used for AI validation**.
112
 
113
  This technology helps manufacturers **automate anomaly detection, reduce waste, and ensure top-tier product quality** at an industrial scale. πŸš€
114
  """)
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  # Dataset Page
118
  def dataset_page():
 
380
  Essentially, these **1536 features** act like a summary of the image’s most important elements. πŸ“
381
 
382
  """)
383
+ st.image("images/internal_features.png", caption="ResNet50 Block 1 & 2, random internal features", use_container_width=True)
384
+
385
  def models_page():
386
  st.title("πŸ€– Anomaly Detection Models")
387