Spaces:
Running
Running
File size: 7,036 Bytes
8826642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from PIL import Image
from joypy import joyplot
import seaborn as sns
import matplotlib.pyplot as plt
# Function to load dataset
def load_dataset():
file_path = "Data/mvtec_meta_features_dataset.csv"
try:
complete_df = pd.read_csv(file_path)
# Show available column names for debugging
print("Available columns:", complete_df.columns)
# Verify column presence
required_columns = ["category", "set_type", "anomaly_status"]
for col in required_columns:
if col not in complete_df.columns:
raise KeyError(f"Missing required column: {col}")
# Define the subclasses for each category
subclasses = {
'Texture-Based': ['carpet', 'wood', 'tile', 'leather', 'zipper'],
'Industrial Components': ['cable', 'transistor', 'screw', 'grid', 'metal_nut'],
'Consumer Products': ['bottle', 'capsule', 'toothbrush'],
'Edible': ['hazelnut', 'pill']
}
# Add a new column to the DataFrame to store the subclass
complete_df['subclass'] = complete_df['category'].apply(
lambda x: next((key for key, value in subclasses.items() if x in value), 'Unknown')
)
# Reorder columns to place 'subclass' after 'category'
cols = list(complete_df.columns)
cols.insert(cols.index('category') + 1, cols.pop(cols.index('subclass')))
complete_df = complete_df[cols]
return complete_df
except Exception as e:
st.error(f"Error loading dataset: {e}")
return None
# Function to generate dataset statistics
def dataset_statistics():
df = load_dataset()
if df is not None:
print("Loaded dataset preview:\n", df.head()) # Debugging step
# Aggregate counts for each category and condition
train_normal = df[(df['set_type'] == 'train') & (df['anomaly_status'] == 'normal')].groupby('category').size()
test_normal = df[(df['set_type'] == 'test') & (df['anomaly_status'] == 'normal')].groupby('category').size()
test_anomalous = df[(df['set_type'] == 'test') & (df['anomaly_status'] == 'anomalous')].groupby('category').size()
# Combine into a single DataFrame
final_summary = pd.DataFrame({
'Train Normal Images': train_normal,
'Test Normal Images': test_normal,
'Test Anomalous Images': test_anomalous
}).fillna(0).reset_index()
return final_summary
return None
# Function to generate the bar chart
def dataset_distribution_chart(df):
fig = go.Figure()
fig.add_trace(go.Bar(
x=df['category'],
y=df['Train Normal Images'],
name='Train Normal Images',
marker_color='blue'
))
fig.add_trace(go.Bar(
x=df['category'],
y=df['Test Normal Images'],
name='Test Normal Images',
marker_color='red'
))
fig.add_trace(go.Bar(
x=df['category'],
y=df['Test Anomalous Images'],
name='Test Anomalous Images',
marker_color='green'
))
# Update layout
fig.update_layout(
title="Distribution of Normal and Anomalous Images per Category",
xaxis_title="Categories",
yaxis_title="Number of Images",
barmode='stack',
legend_title="Image Types"
)
# Display chart in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Function to display the complete dataframe with expander
def display_dataframe():
df = load_dataset()
if df is not None:
with st.expander("Show Complete DataFrame"):
st.dataframe(df)
def plot_bgr_pixel_densities(df, pixel_columns=['num_pixels_b', 'num_pixels_g', 'num_pixels_r']):
"""
Generate JoyPy density plots for pixel counts of BGR channels for a given category.
Parameters:
df (pd.DataFrame): Filtered DataFrame for a single category.
pixel_columns (list): List of column names for BGR pixel counts.
Returns:
None
"""
if df.empty:
st.warning("⚠️ No data available for the selected category.")
return
# Plot JoyPy density plot
fig, axes = joyplot(
data=df,
by="category", # Group by category
column=pixel_columns,
color=['blue', 'green', 'red'], # Colors for BGR channels
alpha=0.5,
fade=True,
legend=True,
linewidth=1.0,
overlap=3,
figsize=(8, 6) # Adjust the figure size here
)
# Add title and labels
plt.title(f'Density Plots for {df["category"].unique()[0]}', fontsize=14)
plt.xlabel('Number of Pixels Density', fontsize=12)
plt.ylabel('Categories', fontsize=12)
# Show the plot in Streamlit
st.pyplot(fig)
def plot_pair_plots(complete_df):
"""
Generate and display pair plots for each category in the dataset.
Parameters:
complete_df (pd.DataFrame): The input DataFrame containing image features and categories.
Returns:
None
"""
# Define the features to be included in the pairplot
features = ['num_pixels_b', 'num_pixels_g', 'num_pixels_r', 'perceived_brightness']
# Create a separate pairplot for each category
for category in complete_df['category'].unique():
# Filter data for current category
category_df = complete_df[complete_df['category'] == category]
# Check if the filtered DataFrame is not empty
if not category_df.empty:
# Create PairGrid with hue and palette
g = sns.PairGrid(category_df, vars=features, hue='anomaly_status', palette={'normal': 'blue', 'anomalous': 'red'})
# Map the plots to the grid
g.map_upper(sns.scatterplot, alpha=0.6)
g.map_diag(sns.histplot, kde=True)
g.map_lower(sns.scatterplot, alpha=0.6)
# Add legend
g.add_legend()
# Customize the plot
g.figure.suptitle(f'Feature Relationships for {category.title()}', y=1.02, fontsize=14)
# Improve label readability
for i in range(len(g.axes)):
for j in range(len(g.axes)):
if g.axes[i][j] is not None:
g.axes[i][j].set_xlabel(g.axes[i][j].get_xlabel().replace('_', ' ').title())
g.axes[i][j].set_ylabel(g.axes[i][j].get_ylabel().replace('_', ' ').title())
# Adjust legend position to the right without overlapping the plots
g._legend.set_bbox_to_anchor((1.05, 0.5))
g._legend.set_loc('center left')
plt.tight_layout()
st.pyplot(g.figure)
|