import torch import torch.nn as nn import torch.nn.init as init import logging from ddiffusers.models.lora import LoRALinearLayer from ddiffusers.models.attention import Attention from ddiffusers.utils import USE_PEFT_BACKEND from typing import Optional from einops import rearrange logger = logging.getLogger(__name__) class AttnProcessor: r""" Default processor for performing attention-related computations. """ def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, camera_feature=None ) -> torch.Tensor: residual = hidden_states args = () if USE_PEFT_BACKEND else (scale,) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class LoRAAttnProcessor(nn.Module): r""" Default processor for performing attention-related computations. """ def __init__( self, hidden_size=None, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, ): super().__init__() self.rank = rank self.lora_scale = lora_scale self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, camera_feature=None, scale=None ): lora_scale = self.lora_scale if scale is None else scale residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) + lora_scale * self.to_q_lora(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) + lora_scale * self.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) + lora_scale * self.to_v_lora(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CameraAdaptorAttnProcessor(nn.Module): def __init__(self, hidden_size, # dimension of hidden state camera_feature_dim=None, # dimension of the camera feature cross_attention_dim=None, # dimension of the text embedding query_condition=False, key_value_condition=False, scale=1.0): super().__init__() self.hidden_size = hidden_size self.camera_feature_dim = camera_feature_dim self.cross_attention_dim = cross_attention_dim self.scale = scale self.query_condition = query_condition self.key_value_condition = key_value_condition assert hidden_size == camera_feature_dim if self.query_condition and self.key_value_condition: self.qkv_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.qkv_merge.weight) init.zeros_(self.qkv_merge.bias) elif self.query_condition: self.q_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.q_merge.weight) init.zeros_(self.q_merge.bias) else: self.kv_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.kv_merge.weight) init.zeros_(self.kv_merge.bias) def forward(self, attn, hidden_states, camera_feature, encoder_hidden_states=None, attention_mask=None, temb=None, scale=None,): assert camera_feature is not None camera_embedding_scale = (scale or self.scale) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) if hidden_states.dim == 5: hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c') elif hidden_states.ndim == 4: hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c') else: assert hidden_states.ndim == 3 if self.query_condition and self.key_value_condition: assert encoder_hidden_states is None if encoder_hidden_states is None: encoder_hidden_states = hidden_states if encoder_hidden_states.ndim == 5: encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c') elif encoder_hidden_states.ndim == 4: encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c') else: assert encoder_hidden_states.ndim == 3 if camera_feature.ndim == 5: camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c") elif camera_feature.ndim == 4: camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c") else: assert camera_feature.ndim == 3 batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.query_condition and self.key_value_condition: # only self attention query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states key_value_hidden_state = query_hidden_state elif self.query_condition: query_hidden_state = self.q_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states key_value_hidden_state = encoder_hidden_states else: key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * camera_embedding_scale + encoder_hidden_states query_hidden_state = hidden_states # original attention query = attn.to_q(query_hidden_state) key = attn.to_k(key_value_hidden_state) value = attn.to_v(key_value_hidden_state) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class LORACameraAdaptorAttnProcessor(nn.Module): def __init__(self, hidden_size, # dimension of hidden state camera_feature_dim=None, # dimension of the camera feature cross_attention_dim=None, # dimension of the text embedding query_condition=False, key_value_condition=False, scale=1.0, # lora keywords rank=4, network_alpha=None, lora_scale=1.0): super().__init__() self.hidden_size = hidden_size self.camera_feature_dim = camera_feature_dim self.cross_attention_dim = cross_attention_dim self.scale = scale self.query_condition = query_condition self.key_value_condition = key_value_condition assert hidden_size == camera_feature_dim if self.query_condition and self.key_value_condition: self.qkv_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.qkv_merge.weight) init.zeros_(self.qkv_merge.bias) elif self.query_condition: self.q_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.q_merge.weight) init.zeros_(self.q_merge.bias) else: self.kv_merge = nn.Linear(hidden_size, hidden_size) init.zeros_(self.kv_merge.weight) init.zeros_(self.kv_merge.bias) # lora self.rank = rank self.lora_scale = lora_scale self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, scale=1.0, camera_feature=None, ): assert camera_feature is not None lora_scale = self.lora_scale if scale is None else scale residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) if hidden_states.dim == 5: hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c') elif hidden_states.ndim == 4: hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c') else: assert hidden_states.ndim == 3 if self.query_condition and self.key_value_condition: assert encoder_hidden_states is None if encoder_hidden_states is None: encoder_hidden_states = hidden_states if encoder_hidden_states.ndim == 5: encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c') elif encoder_hidden_states.ndim == 4: encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c') else: assert encoder_hidden_states.ndim == 3 if camera_feature.ndim == 5: camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c") elif camera_feature.ndim == 4: camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c") else: assert camera_feature.ndim == 3 batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.query_condition and self.key_value_condition: # only self attention query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * self.scale + hidden_states key_value_hidden_state = query_hidden_state elif self.query_condition: query_hidden_state = self.q_merge(hidden_states + camera_feature) * self.scale + hidden_states key_value_hidden_state = encoder_hidden_states else: key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * self.scale + encoder_hidden_states query_hidden_state = hidden_states # original attention query = attn.to_q(query_hidden_state) + lora_scale * self.to_q_lora(query_hidden_state) key = attn.to_k(key_value_hidden_state) + lora_scale * self.to_k_lora(key_value_hidden_state) value = attn.to_v(key_value_hidden_state) + lora_scale * self.to_v_lora(key_value_hidden_state) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states