# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py from einops import rearrange, repeat from functools import partial from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from ddiffusers.models.activations import get_activation from ddiffusers.models.normalization import AdaGroupNorm from ddiffusers.models.attention_processor import SpatialNorm class InflatedConv3d(nn.Conv2d): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x class InflatedGroupNorm(nn.GroupNorm): def forward(self, x): # return super().forward(x) video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x def zero_module(module): # Zero out the parameters of a module and return it. for p in module.parameters(): p.detach().zero_() return module class FusionBlock2D(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. groups_out (`int`, *optional*, default to None): The number of groups to use for the second normalization layer. if set to None, same as `groups`. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or "ada_group" for a stronger conditioning with scale and shift. kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. use_in_shortcut (`bool`, *optional*, default to `True`): If `True`, add a 1x1 nn.conv2d layer for skip-connection. up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the `conv_shortcut` output. conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. If None, same as `out_channels`. """ def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", skip_time_act=False, time_embedding_norm="default", # default, scale_shift, ada_group, spatial kernel=None, output_scale_factor=1.0, use_in_shortcut=None, up=False, down=False, conv_shortcut_bias: bool = True, conv_2d_out_channels: Optional[int] = None, zero_init=True, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True in_channels = in_channels * 2 self.in_channels = in_channels out_channels = in_channels * 3 if out_channels is None else out_channels * 3 self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.up = up self.down = down self.output_scale_factor = output_scale_factor self.time_embedding_norm = time_embedding_norm self.skip_time_act = skip_time_act if groups_out is None: groups_out = groups if self.time_embedding_norm == "ada_group": self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) elif self.time_embedding_norm == "spatial": self.norm1 = SpatialNorm(in_channels, temb_channels) else: self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) if temb_channels is not None: if self.time_embedding_norm == "default": self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) elif self.time_embedding_norm == "scale_shift": self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels) elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": self.time_emb_proj = None else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") else: self.time_emb_proj = None if self.time_embedding_norm == "ada_group": self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) elif self.time_embedding_norm == "spatial": self.norm2 = SpatialNorm(out_channels, temb_channels) else: self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) conv_2d_out_channels = conv_2d_out_channels or out_channels self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0) self.nonlinearity = get_activation(non_linearity) self.upsample = self.downsample = None if self.up: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") else: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) else: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias ) conv_out = torch.nn.Conv2d( conv_2d_out_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, ) self.conv_out = zero_module(conv_out) if zero_init else conv_out def forward(self, init_hidden_state, post_hidden_states, temb): # init_hidden_state: b c 1 h w # post_hidden_states: b c (f-1) h w video_length = post_hidden_states.shape[2] repeated_init_hidden_state = repeat(init_hidden_state, "b c f h w -> b c (n f) h w", n=video_length) hidden_states = torch.cat([repeated_init_hidden_state, post_hidden_states], dim=1) hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") input_tensor = hidden_states if temb.shape[0] != input_tensor.shape[0]: temb = repeat(temb, "b c -> (b n) c", n=input_tensor.shape[0] // temb.shape[0]) assert temb.shape[0] == input_tensor.shape[0], f"{temb.shape}, {input_tensor.shape}" if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm1(hidden_states, temb) else: hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) if self.time_emb_proj is not None: if not self.skip_time_act: temb = self.nonlinearity(temb) temb = self.time_emb_proj(temb)[:, :, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm2(hidden_states, temb) else: hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor output_tensor = self.conv_out(output_tensor) output_tensor = rearrange(output_tensor, "(b f) c h w -> b c f h w", f=video_length) scale_1, scale_2, shift = output_tensor.chunk(3, dim=1) # output_tensor = (1 + scale_1) * repeated_init_hidden_state + scale_2 * post_hidden_states + shift output_tensor = scale_1 * repeated_init_hidden_state + (1 + scale_2) * post_hidden_states + shift return output_tensor class Upsample3D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError elif use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # if self.use_conv: # if self.name == "conv": # hidden_states = self.conv(hidden_states) # else: # hidden_states = self.Conv2d_0(hidden_states) hidden_states = self.conv(hidden_states) return hidden_states class Downsample3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: raise NotImplementedError def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): # input: b c f h w hidden_states = input_tensor video_length = hidden_states.shape[2] emb = repeat(emb, "b c -> (b f) c", f=video_length) hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))