pandaphd's picture
fix diffusers
95c0c23
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
import os
import json
import safetensors
import logging
import torch
import torch.nn as nn
import torch.utils.checkpoint
from einops import repeat, rearrange
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union, Dict, Any
from ddiffusers.configuration_utils import ConfigMixin, register_to_config
from ddiffusers.models.attention_processor import AttentionProcessor
from ddiffusers.utils import SAFETENSORS_WEIGHTS_NAME
from ddiffusers.models.modeling_utils import ModelMixin
from ddiffusers.utils import BaseOutput, logging
from ddiffusers.models.embeddings import TimestepEmbedding, Timesteps
from ddiffusers.models.attention_processor import LoRAAttnProcessor
from ddiffusers.loaders import AttnProcsLayers, UNet2DConditionLoadersMixin
from genphoto.models.unet_blocks import (
CrossAttnDownBlock3D,
CrossAttnUpBlock3D,
DownBlock3D,
UNetMidBlock3DCrossAttn,
UpBlock3D,
get_down_block,
get_up_block,
)
from genphoto.models.attention_processor import (
LORACameraAdaptorAttnProcessor,
CameraAdaptorAttnProcessor
)
from genphoto.models.attention_processor import LoRAAttnProcessor as CustomizedLoRAAttnProcessor
from genphoto.models.attention_processor import AttnProcessor as CustomizedAttnProcessor
from genphoto.models.resnet import (
InflatedConv3d,
FusionBlock2D
)
@dataclass
class UNet3DConditionOutput(BaseOutput):
sample: torch.FloatTensor
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D",
),
mid_block_type: str = "UNetMidBlock3DCrossAttn",
up_block_types: Tuple[str] = (
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: Union[int, Tuple[int]] = 8,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
# Additional
use_motion_module=False,
motion_module_resolutions=(1, 2, 4, 8),
motion_module_mid_block=False,
motion_module_type=None,
motion_module_kwargs={},
# whether fuse first frame's feature
fuse_first_frame: bool = False,
):
super().__init__()
self.logger = logging.get_logger(__name__)
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
# time
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
self.down_fusers = nn.ModuleList([])
self.mid_fuser = None
self.down_fusers.append(
FusionBlock2D(
in_channels=block_out_channels[0],
out_channels=block_out_channels[0],
temb_channels=time_embed_dim,
eps=norm_eps,
groups=norm_num_groups,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=act_fn,
) if fuse_first_frame else None
)
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
res = 2 ** i
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_motion_module=use_motion_module and (res in motion_module_resolutions),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
down_fuser = nn.ModuleList(
[
FusionBlock2D(
in_channels=output_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
eps=norm_eps,
groups=norm_num_groups,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=act_fn,
) if fuse_first_frame else None for _ in
range(layers_per_block if is_final_block else layers_per_block + 1)
]
)
self.down_blocks.append(down_block)
self.down_fusers.append(down_fuser)
# mid
if mid_block_type == "UNetMidBlock3DCrossAttn":
self.mid_block = UNetMidBlock3DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
use_motion_module=use_motion_module and motion_module_mid_block,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
self.mid_fuser = FusionBlock2D(
in_channels=block_out_channels[-1],
out_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
eps=norm_eps,
groups=norm_num_groups,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=act_fn,
) if fuse_first_frame else None
# count how many layers upsample the videos
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
res = 2 ** (3 - i)
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_motion_module=use_motion_module and (res in motion_module_resolutions),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def set_image_layer_lora(self, image_layer_lora_rank: int = 128):
lora_attn_procs = {}
for name in self.attn_processors.keys():
self.logger.info(f"(add lora) {name}")
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=image_layer_lora_rank if image_layer_lora_rank > 16 else hidden_size // image_layer_lora_rank,
)
self.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(self.attn_processors)
self.logger.info(f"(lora parameters): {sum(p.numel() for p in lora_layers.parameters()) / 1e6:.3f} M")
del lora_layers
def set_image_layer_lora_scale(self, lora_scale: float = 1.0):
for block in self.down_blocks: setattr(block, "lora_scale", lora_scale)
for block in self.up_blocks: setattr(block, "lora_scale", lora_scale)
setattr(self.mid_block, "lora_scale", lora_scale)
def set_motion_module_lora_scale(self, lora_scale: float = 1.0):
for block in self.down_blocks: setattr(block, "motion_lora_scale", lora_scale)
for block in self.up_blocks: setattr(block, "motion_lora_scale", lora_scale)
setattr(self.mid_block, "motion_lora_scale", lora_scale)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
# filter out processors in motion module
if hasattr(module, "set_processor"):
if not "motion_modules." in name:
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not "motion_modules." in name:
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_motion_module_lora_layers(self, motion_module_lora_rank: int = 32):
lora_attn_procs = {}
for name in self.mm_attn_processors.keys():
self.logger.info(f"(add lora) {name}")
cross_attention_dim = None
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=motion_module_lora_rank if motion_module_lora_rank > 16 else hidden_size // motion_module_lora_rank,
)
self.set_mm_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(self.mm_attn_processors)
return lora_layers
@property
def mm_attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module,
processors: Dict[str, AttentionProcessor]):
# filter out processors in motion module
if hasattr(module, "set_processor"):
if "motion_modules." in name:
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_mm_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.mm_attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if "motion_modules." in name:
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: Union[torch.Tensor, List[torch.Tensor]],
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
# support controlnet
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
# other features
motion_module_alphas: Union[tuple, float] = 1.0,
debug: bool = False,
) -> Union[UNet3DConditionOutput, Tuple]:
activations = {}
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2 ** self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
self.logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# center input if necessary1
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# extend encoder_hidden_states
video_length = sample.shape[2]
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length)
# emb_single = emb
# emb = repeat(emb, "b c -> (b f) c", f=video_length)
# pre-process
sample = self.conv_in(sample)
activations["conv_in_out"] = sample
# to be fused
if self.down_fusers[0] != None:
# scale, shift = self.down_fusers[0](sample[:,:,0].contiguous(), emb_single).unsqueeze(2).chunk(2, dim=1)
# sample[:,:,1:] = (1 + scale) * sample[:,:,1:].contiguous() + shift
fused_sample = self.down_fusers[0](
init_hidden_state=sample[:, :, :1].contiguous(),
post_hidden_states=sample[:, :, 1:].contiguous(),
temb=emb_single,
)
sample = torch.cat([sample[:, :, :1], fused_sample], dim=2)
activations["conv_in_fuse_out"] = sample
# down
down_block_res_samples = (sample,)
# motion module alpha
if isinstance(motion_module_alphas, float):
motion_module_alphas = (motion_module_alphas,) * 5
for downsample_block, down_fuser, motion_module_alpha in zip(self.down_blocks, self.down_fusers[1:],
motion_module_alphas[:-1]):
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs
)
# to be fused
for sample_idx, fuser in enumerate(down_fuser):
if fuser != None:
fused_sample = fuser(
init_hidden_state=res_samples[sample_idx][:, :, :1].contiguous(),
post_hidden_states=res_samples[sample_idx][:, :, 1:].contiguous(),
temb=emb_single,
)
res_samples = list(res_samples)
res_samples[sample_idx] = torch.cat([res_samples[sample_idx][:, :, :1], fused_sample], dim=2)
res_samples = tuple(res_samples)
down_block_res_samples += res_samples
# support controlnet
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
if len(down_block_additional_residual.shape) == 4:
# b c h w
# if input single condition, apply it to all frames
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
# boardcast will solve the problem
# down_block_additional_residual = repeat(down_block_additional_residual, "b c f h w -> b c (f n) h w", n=video_length)
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask,
motion_module_alpha=motion_module_alphas[-1], cross_attention_kwargs=cross_attention_kwargs
)
# mid block fuser
if self.mid_fuser != None:
fused_sample = self.mid_fuser(
init_hidden_state=sample[:, :, :1],
post_hidden_states=sample[:, :, 1:],
temb=emb_single,
)
sample = torch.cat([sample[:, :, :1], fused_sample], dim=2)
# support controlnet
if mid_block_additional_residual is not None:
if len(mid_block_additional_residual.shape) == 4:
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
# boardcast will solve this problemq
# mid_block_additional_residual = repeat(mid_block_additional_residual, "b c f h w -> b c (f n) h w", n=video_length)
sample = sample + mid_block_additional_residual
# up
for i, (upsample_block, motion_module_alpha) in enumerate(zip(self.up_blocks, motion_module_alphas[:-1][::-1])):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size,
encoder_hidden_states=encoder_hidden_states, motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs
)
activations["upblocks_out"] = sample
# post-process
# frame-wise normalization
sample = rearrange(sample, "b c f h w -> (b f) c h w")
sample = self.conv_norm_out(sample)
sample = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if (not return_dict):
return (sample,)
elif debug:
return UNet3DConditionOutput(sample=sample), activations
else:
return UNet3DConditionOutput(sample=sample)
@classmethod
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None, logger=None):
if logger is not None:
logger.info(f"Loading unet's pretrained weights from {pretrained_model_path} ...")
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
config["_class_name"] = cls.__name__
config["down_block_types"] = [
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D"
]
config["up_block_types"] = [
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D"
]
model, unused_kwargs = cls.from_config(config, return_unused_kwargs=True, **unet_additional_kwargs)
if logger is not None:
logger.info(f"please check unused kwargs in 'unet_additional_kwargs' config:")
for k, v in unused_kwargs.items():
if logger is not None:
logger.info(f"{k:50s}: {repr(v)}")
model_file = os.path.join(pretrained_model_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = safetensors.torch.load_file(model_file, device="cpu")
missing, unexpected = model.load_state_dict(state_dict, strict=False)
if logger is not None:
logger.info(f"Missing keys: {len(missing)}; Unexpected keys: {len(unexpected)};")
assert len(unexpected) == 0
params = [p.numel() if "motion_modules." in n else 0 for n, p in model.named_parameters()]
if logger is not None:
logger.info(f"Motion module parameters: {sum(params) / 1e6} M")
return model
class UNet3DConditionModelCameraCond(UNet3DConditionModel):
_supports_gradient_checkpointing = True
@classmethod
def extract_init_dict(cls, config_dict, **kwargs):
# Skip keys that were not present in the original config, so default __init__ values were used
used_defaults = config_dict.get("_use_default_values", [])
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
# 0. Copy origin config dict
original_dict = dict(config_dict.items())
# 1. Retrieve expected config attributes from __init__ signature
expected_keys = cls._get_init_keys(cls)
expected_keys.remove("self")
super_expected_keys = cls._get_init_keys(UNet3DConditionModel)
super_expected_keys.remove("self")
# remove general kwargs if present in dict
if "kwargs" in expected_keys:
expected_keys.remove("kwargs")
if "kwargs" in super_expected_keys:
super_expected_keys.remove("kwargs")
# remove flax internal keys
if hasattr(cls, "_flax_internal_args"):
for arg in cls._flax_internal_args:
expected_keys.remove(arg)
expected_keys = expected_keys.union(super_expected_keys)
# remove private attributes
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
init_dict = {}
for key in expected_keys:
# if config param is passed to kwarg and is present in config dict
# it should overwrite existing config dict key
if key in kwargs and key in config_dict:
config_dict[key] = kwargs.pop(key)
if key in kwargs:
# overwrite key
init_dict[key] = kwargs.pop(key)
elif key in config_dict:
# use value from config dict
init_dict[key] = config_dict.pop(key)
# 4. Give nice warning if unexpected values have been passed
if len(config_dict) > 0:
print(
f"The config attributes {config_dict} were passed to {cls.__name__}, "
"but are not expected and will be ignored. Please verify your "
f"{cls.config_name} configuration file."
)
# 6. Define unused keyword arguments
unused_kwargs = {**config_dict, **kwargs}
# 7. Define "hidden" config parameters that were saved for compatible classes
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
return init_dict, unused_kwargs, hidden_config_dict
def __init__(self,
decoder_add_cameracond=True,
**kwargs):
super(UNet3DConditionModelCameraCond, self).__init__(**kwargs)
self.decoder_add_cameracond = decoder_add_cameracond
def set_all_attn_processor(self,
add_spatial=False,
spatial_attn_names='attn1',
add_temporal=False,
add_spatial_lora=True,
add_motion_lora=False,
temporal_attn_names='0',
camera_feature_dimensions=[320, 640, 1280, 1280],
lora_kwargs={},
motion_lora_kwargs={},
**attention_processor_kwargs):
lora_rank = lora_kwargs.pop('lora_rank')
motion_lora_rank = motion_lora_kwargs.pop('lora_rank')
spatial_attn_procs = {}
if add_spatial:
set_processor_names = spatial_attn_names.split(',')
for name in self.attn_processors.keys():
attention_name = name.split('.')[-2]
cross_attention_dim = None if attention_name == 'attn1' else self.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
block_id = -1
add_camera_adaptor = attention_name in set_processor_names
camera_feature_dim = camera_feature_dimensions[block_id] if add_camera_adaptor else None
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
add_camera_adaptor = attention_name in set_processor_names
camera_feature_dim = list(reversed(camera_feature_dimensions))[block_id] if add_camera_adaptor else None
else:
assert name.startswith("down_blocks")
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
add_camera_adaptor = attention_name in set_processor_names
camera_feature_dim = camera_feature_dimensions[block_id] if add_camera_adaptor else None
if add_camera_adaptor and add_spatial_lora:
spatial_attn_procs[name] = LORACameraAdaptorAttnProcessor(hidden_size=hidden_size,
camera_feature_dim=camera_feature_dim,
cross_attention_dim=cross_attention_dim,
rank=lora_rank if lora_rank > 16 else hidden_size // lora_rank,
**attention_processor_kwargs,
**lora_kwargs)
elif add_camera_adaptor:
spatial_attn_procs[name] = CameraAdaptorAttnProcessor(hidden_size=hidden_size,
camera_feature_dim=camera_feature_dim,
cross_attention_dim=cross_attention_dim,
**attention_processor_kwargs)
elif add_spatial_lora:
spatial_attn_procs[name] = CustomizedLoRAAttnProcessor(hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=lora_rank if lora_rank > 16 else hidden_size // lora_rank)
else:
spatial_attn_procs[name] = CustomizedAttnProcessor()
elif (not add_spatial) and add_spatial_lora:
for name in self.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
spatial_attn_procs[name] = CustomizedLoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=lora_rank if lora_rank > 16 else hidden_size // lora_rank,
)
else:
for name in self.attn_processors.keys():
spatial_attn_procs[name] = CustomizedAttnProcessor()
self.set_attn_processor(spatial_attn_procs)
mm_attn_procs = {}
if add_temporal:
set_processor_names = temporal_attn_names.split(',')
cross_attention_dim = None
for name in self.mm_attn_processors.keys():
attention_name = name.split('.')[-2]
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
block_id = -1
add_camera_adaptor = attention_name in set_processor_names
camera_feature_dim = camera_feature_dimensions[block_id] if add_camera_adaptor else None
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
add_camera_adaptor = (attention_name in set_processor_names) and self.decoder_add_cameracond
camera_feature_dim = list(reversed(camera_feature_dimensions))[block_id] if add_camera_adaptor else None
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
add_camera_adaptor = attention_name in set_processor_names
camera_feature_dim = camera_feature_dimensions[block_id] if add_camera_adaptor else None
if add_camera_adaptor and add_motion_lora:
mm_attn_procs[name] = LORACameraAdaptorAttnProcessor(hidden_size=hidden_size,
camera_feature_dim=camera_feature_dim,
cross_attention_dim=cross_attention_dim,
rank=motion_lora_rank if motion_lora_rank > 16 else hidden_size // motion_lora_rank,
**attention_processor_kwargs,
**motion_lora_kwargs)
elif add_camera_adaptor:
mm_attn_procs[name] = CameraAdaptorAttnProcessor(hidden_size=hidden_size,
camera_feature_dim=camera_feature_dim,
cross_attention_dim=cross_attention_dim,
**attention_processor_kwargs)
elif add_motion_lora:
mm_attn_procs[name] = CustomizedLoRAAttnProcessor(hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=motion_lora_rank if motion_lora_rank > 16 else hidden_size // motion_lora_rank)
else:
mm_attn_procs[name] = CustomizedAttnProcessor()
elif (not add_temporal) and add_motion_lora:
for name in self.mm_attn_processors.keys():
cross_attention_dim = None
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
mm_attn_procs[name] = CustomizedLoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=motion_lora_rank if motion_lora_rank > 16 else hidden_size // motion_lora_rank,
)
else:
for name in self.mm_attn_processors.keys():
mm_attn_procs[name] = CustomizedAttnProcessor()
self.set_mm_attn_processor(mm_attn_procs)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: Union[torch.Tensor, List[torch.Tensor]],
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
camera_embedding_features: List[torch.Tensor] = None,
return_dict: bool = True,
# support controlnet
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
# other features
motion_module_alphas: Union[tuple, float] = 1.0,
debug: bool = False,
) -> Union[UNet3DConditionOutput, Tuple]:
activations = {}
default_overall_up_factor = 2 ** self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
self.logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# center input if necessary1
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# extend encoder_hidden_states
video_length = sample.shape[2]
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length)
# pre-process
sample = self.conv_in(sample) # b c f h w
activations["conv_in_out"] = sample
# to be fused
if self.down_fusers[0] != None:
# scale, shift = self.down_fusers[0](sample[:,:,0].contiguous(), emb_single).unsqueeze(2).chunk(2, dim=1)
# sample[:,:,1:] = (1 + scale) * sample[:,:,1:].contiguous() + shift
fused_sample = self.down_fusers[0](
init_hidden_state=sample[:, :, :1].contiguous(),
post_hidden_states=sample[:, :, 1:].contiguous(),
temb=emb_single,
)
sample = torch.cat([sample[:, :, :1], fused_sample], dim=2)
activations["conv_in_fuse_out"] = sample
# down
down_block_res_samples = (sample,)
# motion module alpha
if isinstance(motion_module_alphas, float):
motion_module_alphas = (motion_module_alphas,) * 5
for downsample_block, camera_embedding_feature, down_fuser, motion_module_alpha in zip(self.down_blocks,
camera_embedding_features,
self.down_fusers[1:],
motion_module_alphas[:-1]):
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs.update({"camera_feature": camera_embedding_feature})
if cross_attention_kwargs is not None else {"camera_feature": camera_embedding_feature},
motion_cross_attention_kwargs={"camera_feature": camera_embedding_feature}
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs.update({"camera_feature": camera_embedding_feature})
if cross_attention_kwargs is not None else {"camera_feature": camera_embedding_feature},
motion_cross_attention_kwargs={"camera_feature": camera_embedding_feature}
)
# to be fused
for sample_idx, fuser in enumerate(down_fuser):
if fuser != None:
fused_sample = fuser(
init_hidden_state=res_samples[sample_idx][:, :, :1].contiguous(),
post_hidden_states=res_samples[sample_idx][:, :, 1:].contiguous(),
temb=emb_single,
)
res_samples = list(res_samples)
res_samples[sample_idx] = torch.cat([res_samples[sample_idx][:, :, :1], fused_sample], dim=2)
res_samples = tuple(res_samples)
down_block_res_samples += res_samples
# support controlnet
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
if len(down_block_additional_residual.shape) == 4:
# b c h w
# if input single condition, apply it to all frames
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
# boardcast will solve the problem
# down_block_additional_residual = repeat(down_block_additional_residual, "b c f h w -> b c (f n) h w", n=video_length)
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# mid
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alphas[-1],
cross_attention_kwargs=cross_attention_kwargs.update({"camera_feature": camera_embedding_features[-1]})
if cross_attention_kwargs is not None else {"camera_feature": camera_embedding_features[-1]},
motion_cross_attention_kwargs={"camera_feature": camera_embedding_features[-1]}
)
# mid block fuser
if self.mid_fuser != None:
fused_sample = self.mid_fuser(
init_hidden_state=sample[:, :, :1],
post_hidden_states=sample[:, :, 1:],
temb=emb_single,
)
sample = torch.cat([sample[:, :, :1], fused_sample], dim=2)
# support controlnet
if mid_block_additional_residual is not None:
if len(mid_block_additional_residual.shape) == 4:
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
# boardcast will solve this problemq
# mid_block_additional_residual = repeat(mid_block_additional_residual, "b c f h w -> b c (f n) h w", n=video_length)
sample = sample + mid_block_additional_residual
# up
for i, (upsample_block, motion_module_alpha) in enumerate(zip(self.up_blocks, motion_module_alphas[:-1][::-1])):
is_final_block = i == len(self.up_blocks) - 1
camera_embedding_feature = camera_embedding_features[-(i+1)] if self.decoder_add_cameracond else None
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if self.decoder_add_cameracond:
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs.update({"camera_feature":camera_embedding_feature})
if cross_attention_kwargs is not None else {"camera_feature": camera_embedding_feature},
motion_cross_attention_kwargs={"camera_feature": camera_embedding_feature}
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs.update({"camera_feature": camera_embedding_feature})
if cross_attention_kwargs is not None else {"camera_feature": camera_embedding_feature},
motion_cross_attention_kwargs={"camera_feature": camera_embedding_feature}
)
else:
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
motion_module_alpha=motion_module_alpha,
cross_attention_kwargs=cross_attention_kwargs
)
activations["upblocks_out"] = sample
# post-process
# frame-wise normalization
sample = rearrange(sample, "b c f h w -> (b f) c h w")
sample = self.conv_norm_out(sample)
sample = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if (not return_dict):
return (sample,)
elif debug:
return UNet3DConditionOutput(sample=sample), activations
else:
return UNet3DConditionOutput(sample=sample)