File size: 5,317 Bytes
1ae4e5b
 
 
 
 
 
 
 
279a838
 
 
 
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py

from dataclasses import dataclass
from typing import Optional

import torch
from torch import nn

from ddiffusers.configuration_utils import ConfigMixin, register_to_config
from ddiffusers.models.modeling_utils import ModelMixin
from ddiffusers.utils import BaseOutput
from ddiffusers.models.attention import BasicTransformerBlock
from einops import rearrange, repeat


@dataclass
class Transformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


class Transformer3DModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
            self,
            num_attention_heads: int = 16,
            attention_head_dim: int = 88,
            in_channels: Optional[int] = None,
            num_layers: int = 1,
            dropout: float = 0.0,
            norm_num_groups: int = 32,
            cross_attention_dim: Optional[int] = None,
            attention_bias: bool = False,
            activation_fn: str = "geglu",
            num_embeds_ada_norm: Optional[int] = None,
            use_linear_projection: bool = False,
            only_cross_attention: bool = False,
            upcast_attention: bool = False,
            norm_type: str = "layer_norm",
            norm_elementwise_affine: bool = True,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # Define input layers
        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        # Input
        assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        batch_size, _, video_length = hidden_states.shape[:3]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        if encoder_hidden_states.shape[0] == batch_size:
            encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)

        elif encoder_hidden_states.shape[0] == batch_size * video_length:
            pass
        else:
            raise ValueError

        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        # Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
            )

        # Output
        if not self.use_linear_projection:
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            )
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            )

        output = hidden_states + residual

        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
        if not return_dict:
            return (output,)

        return Transformer3DModelOutput(sample=output)