openfree commited on
Commit
44a57dc
ยท
verified ยท
1 Parent(s): a9b57aa

Create app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +1016 -0
app-backup.py ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import pandas as pd
4
+ import plotly.graph_objects as go
5
+ from datetime import datetime
6
+ import os
7
+
8
+ HF_TOKEN = os.getenv("HF_TOKEN")
9
+
10
+ target_models = {
11
+ "openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
12
+ "seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
13
+ "LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
14
+ "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
15
+ "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
16
+ "ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
17
+ "seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
18
+ "moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
19
+
20
+
21
+ "NCSOFT/VARCO-VISION-14B": "https://huggingface.co/NCSOFT/VARCO-VISION-14B",
22
+ "NCSOFT/Llama-VARCO-8B-Instruct": "https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct",
23
+ "NCSOFT/VARCO-VISION-14B-HF": "https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF",
24
+
25
+ "Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
26
+ "AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
27
+ "nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
28
+ "Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
29
+ "princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
30
+ "migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
31
+ "DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
32
+ "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
33
+ "ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
34
+ "VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
35
+ "Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
36
+ "AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
37
+ "mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
38
+ "ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
39
+ "migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
40
+ "Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
41
+ "mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
42
+ "yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
43
+ "vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
44
+ "T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
45
+ "Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
46
+ "BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
47
+ "BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
48
+ "T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
49
+ "BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
50
+ "mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
51
+ "hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
52
+ "yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
53
+ "algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
54
+ "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
55
+ "chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
56
+ "vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
57
+ "RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
58
+ "SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
59
+ "spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
60
+ "BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
61
+ "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
62
+ "T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
63
+ "migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
64
+ "sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
65
+ "MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
66
+ "MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
67
+ "zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
68
+ "TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
69
+ "OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
70
+ "haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
71
+ "Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
72
+ "DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
73
+ "vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
74
+ "chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
75
+ "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
76
+ "ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
77
+ "princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
78
+ "MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
79
+ "chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
80
+ "jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
81
+ "DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
82
+ "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
83
+ "princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
84
+ "AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
85
+ "princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
86
+ "maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
87
+ "princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
88
+ "princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
89
+ "spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
90
+ "princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
91
+ "princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
92
+ "lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
93
+ "migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
94
+ "megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
95
+ "T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
96
+ "maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
97
+ "nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
98
+ "abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
99
+ "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
100
+ "BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
101
+ "openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
102
+ "T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
103
+ "T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
104
+ "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
105
+ "macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
106
+ "openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
107
+ "NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
108
+ "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
109
+ "MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
110
+ "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
111
+ "VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
112
+ "ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
113
+ "SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
114
+ "VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
115
+ "MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
116
+ "Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
117
+ "cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
118
+ "SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
119
+ "4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
120
+ "kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
121
+ "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
122
+ "lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
123
+ "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
124
+ "migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
125
+ "BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
126
+ "yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
127
+ "vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
128
+ "chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
129
+ "Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
130
+ "Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
131
+ "SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
132
+ "lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
133
+ "GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
134
+ "hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
135
+ "etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
136
+ "LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
137
+ "chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
138
+ "lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
139
+ "chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
140
+ "maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
141
+ "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
142
+ "hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
143
+ "12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
144
+ "hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
145
+ "lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
146
+ "chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
147
+ "chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
148
+ "lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
149
+ "Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
150
+ "princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
151
+ "spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
152
+ "natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
153
+ "megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
154
+ "01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
155
+ "Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
156
+ "Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
157
+ "chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
158
+ "hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
159
+ "DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
160
+ "GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
161
+ "PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
162
+ "vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
163
+ "maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
164
+ "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
165
+ "lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
166
+ "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
167
+ "maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
168
+ "hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
169
+ "werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
170
+ "Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
171
+ "maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
172
+ "lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
173
+ "VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
174
+ "Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
175
+ "Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
176
+ "VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
177
+ "NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
178
+ "maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
179
+ "GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
180
+ "01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
181
+ "ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
182
+ "princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
183
+ "hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
184
+ "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
185
+ "yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
186
+ "juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
187
+ "gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
188
+ "mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
189
+ "maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
190
+ "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
191
+ "juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
192
+ "princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
193
+ "moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
194
+ "chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
195
+ "Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
196
+ "gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
197
+ "saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
198
+ "kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
199
+ "maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
200
+ "Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
201
+ "vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
202
+ "ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
203
+ "beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
204
+ "Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
205
+ "spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
206
+ "maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
207
+ "T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
208
+ "ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
209
+ "hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
210
+ "sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
211
+ "4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
212
+ "hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
213
+ "Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
214
+ "hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
215
+ "uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
216
+ "gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
217
+ "shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
218
+ "Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
219
+ "AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
220
+ "tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
221
+ "realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
222
+ "Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
223
+ "GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
224
+ "Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
225
+ "AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
226
+ "gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
227
+ "jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
228
+ "etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
229
+ "ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
230
+ "Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
231
+ "Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
232
+ "wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
233
+ "momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
234
+ "PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
235
+ "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
236
+ "MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
237
+ "failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
238
+ "DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
239
+ "kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
240
+ "4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
241
+ "4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
242
+ "4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
243
+ "PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
244
+ "kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
245
+ "ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
246
+ "HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
247
+ "nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
248
+ "maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
249
+ "yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
250
+ "yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
251
+ "daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
252
+ "beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
253
+ "jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
254
+ "Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
255
+ "01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
256
+ "PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
257
+ "nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
258
+ "dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
259
+ "shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
260
+ "nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
261
+ "ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
262
+ "Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
263
+ "heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
264
+ "etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
265
+ "OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
266
+ "sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
267
+ "Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
268
+ "Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
269
+ "heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
270
+ "jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
271
+ "DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
272
+ "Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
273
+ "migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
274
+ "kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
275
+ "kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
276
+ "jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
277
+ "Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
278
+ "NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
279
+ "kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
280
+ "sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
281
+ "NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
282
+ "rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
283
+ "Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
284
+ "Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
285
+ "tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
286
+ "Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
287
+ "richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
288
+ "ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
289
+ "heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
290
+ "heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
291
+ "shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
292
+ "EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
293
+ "kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
294
+ "sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
295
+ }
296
+
297
+ def get_korea_models():
298
+ """Korea ๊ด€๋ จ ๋ชจ๋ธ ๊ฒ€์ƒ‰"""
299
+ params = {
300
+ "search": "korea",
301
+ "full": "True",
302
+ "config": "True",
303
+ "limit": 1000
304
+ }
305
+
306
+ try:
307
+ response = requests.get(
308
+ "https://huggingface.co/api/models",
309
+ headers={'Accept': 'application/json'},
310
+ params=params
311
+ )
312
+
313
+ if response.status_code == 200:
314
+ return response.json()
315
+ else:
316
+ print(f"Failed to fetch Korea models: {response.status_code}")
317
+ return []
318
+ except Exception as e:
319
+ print(f"Error fetching Korea models: {str(e)}")
320
+ return []
321
+
322
+ def get_all_models(limit=1000):
323
+ """๋ชจ๋“  ๋ชจ๋ธ๊ณผ Korea ๊ด€๋ จ ๋ชจ๋ธ ๊ฐ€์ ธ์˜ค๊ธฐ"""
324
+ all_models = []
325
+
326
+ # 1. ์ผ๋ฐ˜ ๋ชจ๋ธ ๋ฆฌ์ŠคํŠธ ๊ฐ€์ ธ์˜ค๊ธฐ
327
+ params = {
328
+ "limit": limit,
329
+ "full": "True",
330
+ "config": "True"
331
+ }
332
+
333
+ response = requests.get(
334
+ "https://huggingface.co/api/models",
335
+ headers={'Accept': 'application/json'},
336
+ params=params
337
+ )
338
+
339
+ if response.status_code == 200:
340
+ all_models.extend(response.json())
341
+ print(f"Fetched {len(all_models)} general models")
342
+
343
+ # 2. Korea ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
344
+ korea_params = {
345
+ "search": "korea",
346
+ "full": "True",
347
+ "config": "True",
348
+ "limit": limit
349
+ }
350
+
351
+ korea_response = requests.get(
352
+ "https://huggingface.co/api/models",
353
+ headers={'Accept': 'application/json'},
354
+ params=korea_params
355
+ )
356
+
357
+ if korea_response.status_code == 200:
358
+ korea_models = korea_response.json()
359
+ print(f"Fetched {len(korea_models)} Korea-related models")
360
+
361
+ # ์ค‘๋ณต ์ œ๊ฑฐ๏ฟฝ๏ฟฝ๋ฉด์„œ Korea ๋ชจ๋ธ ์ถ”๊ฐ€
362
+ existing_ids = {model.get('id', '') for model in all_models}
363
+ for model in korea_models:
364
+ if model.get('id', '') not in existing_ids:
365
+ all_models.append(model)
366
+ existing_ids.add(model.get('id', ''))
367
+
368
+ # 3. Korean ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
369
+ korean_params = {
370
+ "search": "korean",
371
+ "full": "True",
372
+ "config": "True",
373
+ "limit": limit
374
+ }
375
+
376
+ korean_response = requests.get(
377
+ "https://huggingface.co/api/models",
378
+ headers={'Accept': 'application/json'},
379
+ params=korean_params
380
+ )
381
+
382
+ if korean_response.status_code == 200:
383
+ korean_models = korean_response.json()
384
+ print(f"Fetched {len(korean_models)} Korean-related models")
385
+
386
+ # ์ค‘๋ณต ์ œ๊ฑฐํ•˜๋ฉด์„œ Korean ๋ชจ๋ธ ์ถ”๊ฐ€
387
+ for model in korean_models:
388
+ if model.get('id', '') not in existing_ids:
389
+ all_models.append(model)
390
+ existing_ids.add(model.get('id', ''))
391
+
392
+ print(f"Total unique models: {len(all_models)}")
393
+ return all_models[:limit]
394
+
395
+ def get_models_data(progress=gr.Progress()):
396
+ """๋ชจ๋ธ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ"""
397
+ try:
398
+ progress(0, desc="Fetching models...")
399
+
400
+ # ๋ชจ๋ธ ๊ฐ€์ ธ์˜ค๊ธฐ
401
+ all_global_models = get_all_models(limit=1000)
402
+ print(f"Actually fetched models count: {len(all_global_models)}")
403
+
404
+ # API ์‘๋‹ต ์ˆœ์„œ๋ฅผ ์ˆœ์œ„๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์ˆœ์œ„ ๋งต ์ƒ์„ฑ
405
+ rank_map = {}
406
+ for rank, model in enumerate(all_global_models, 1):
407
+ model_id = model.get('id', '').strip()
408
+ rank_map[model_id] = {
409
+ 'rank': rank,
410
+ 'likes': model.get('likes', 0),
411
+ 'downloads': model.get('downloads', 0),
412
+ 'title': model.get('title', 'No Title')
413
+ }
414
+ print(f"Rank {rank}: {model_id}")
415
+
416
+ # target_models์˜ ์ˆœ์œ„ ํ™•์ธ ๋ฐ ์ •๋ณด ์ˆ˜์ง‘
417
+ filtered_models = []
418
+ for model_id in target_models.keys():
419
+ try:
420
+ # ๊ฐœ๋ณ„ ๋ชจ๋ธ API ํ˜ธ์ถœ
421
+ normalized_id = model_id.strip('/')
422
+ model_url_api = f"https://huggingface.co/api/models/{normalized_id}"
423
+ response = requests.get(
424
+ model_url_api,
425
+ headers={'Accept': 'application/json'}
426
+ )
427
+
428
+ if response.status_code == 200:
429
+ model_data = response.json()
430
+ api_id = model_data.get('id', '').strip()
431
+
432
+ # API ์‘๋‹ต ์ˆœ์„œ์—์„œ ์ˆœ์œ„ ์ฐพ๊ธฐ
433
+ rank_info = rank_map.get(api_id)
434
+
435
+ model_info = {
436
+ 'id': model_id,
437
+ 'global_rank': rank_info['rank'] if rank_info else 'Not in top 1000',
438
+ 'downloads': model_data.get('downloads', 0),
439
+ 'likes': model_data.get('likes', 0),
440
+ 'title': model_data.get('title', 'No Title')
441
+ }
442
+ filtered_models.append(model_info)
443
+ print(f"Model {model_id}: Rank={model_info['global_rank']}, Downloads={model_info['downloads']}, Likes={model_info['likes']}")
444
+ else:
445
+ filtered_models.append({
446
+ 'id': model_id,
447
+ 'global_rank': 'Not in top 1000',
448
+ 'downloads': 0,
449
+ 'likes': 0,
450
+ 'title': 'No Title'
451
+ })
452
+ except Exception as e:
453
+ print(f"Error processing {model_id}: {str(e)}")
454
+ filtered_models.append({
455
+ 'id': model_id,
456
+ 'global_rank': 'Not in top 1000',
457
+ 'downloads': 0,
458
+ 'likes': 0,
459
+ 'title': 'No Title'
460
+ })
461
+
462
+ # ์ˆœ์œ„๋กœ ์ •๋ ฌ
463
+ filtered_models.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
464
+
465
+ progress(0.3, desc="Creating visualization...")
466
+
467
+ # ์‹œ๊ฐํ™” ์ƒ์„ฑ
468
+ fig = go.Figure()
469
+
470
+ # ์ˆœ์œ„๊ถŒ ๋‚ด ๋ชจ๋ธ๋งŒ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์‹œ๊ฐํ™”
471
+ valid_models = [m for m in filtered_models if isinstance(m['global_rank'], (int, float))]
472
+
473
+ if valid_models:
474
+ ids = [m['id'] for m in valid_models]
475
+ ranks = [m['global_rank'] for m in valid_models]
476
+ likes = [m['likes'] for m in valid_models]
477
+ downloads = [m['downloads'] for m in valid_models]
478
+
479
+ # Y์ถ• ๊ฐ’์„ ๋ฐ˜์ „ (๋†’์€ ์ˆœ์œ„๊ฐ€ ์œ„๋กœ ๊ฐ€๋„๋ก)
480
+ y_values = [1001 - r for r in ranks]
481
+
482
+ fig.add_trace(go.Bar(
483
+ x=ids,
484
+ y=y_values,
485
+ text=[f"Global Rank: #{r}<br>Downloads: {format(d, ',')}<br>Likes: {format(l, ',')}"
486
+ for r, d, l in zip(ranks, downloads, likes)],
487
+ textposition='auto',
488
+ marker_color='rgb(158,202,225)',
489
+ opacity=0.8
490
+ ))
491
+
492
+ fig.update_layout(
493
+ title={
494
+ 'text': 'Hugging Face Models Global Rankings',
495
+ 'y':0.95,
496
+ 'x':0.5,
497
+ 'xanchor': 'center',
498
+ 'yanchor': 'top'
499
+ },
500
+ xaxis_title='Model ID',
501
+ yaxis_title='Global Rank',
502
+ yaxis=dict(
503
+ ticktext=[f"#{i}" for i in range(1, 1001, 50)],
504
+ tickvals=[1001 - i for i in range(1, 1001, 50)],
505
+ range=[0, 1000]
506
+ ),
507
+ height=800,
508
+ showlegend=False,
509
+ template='plotly_white',
510
+ xaxis_tickangle=-45
511
+ )
512
+
513
+ progress(0.6, desc="Creating model cards...")
514
+
515
+ # HTML ์นด๋“œ ์ƒ์„ฑ
516
+ html_content = """
517
+ <div style='padding: 20px; background: #f5f5f5;'>
518
+ <h2 style='color: #2c3e50;'>Models Global Rankings</h2>
519
+ <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
520
+ """
521
+
522
+ for model in filtered_models:
523
+ rank_display = f"Global Rank #{model['global_rank']}" if isinstance(model['global_rank'], (int, float)) else "Not in top 1000"
524
+
525
+ html_content += f"""
526
+ <div style='
527
+ background: white;
528
+ padding: 20px;
529
+ border-radius: 10px;
530
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
531
+ transition: transform 0.2s;
532
+ '>
533
+ <h3 style='color: #34495e;'>{rank_display}</h3>
534
+ <h4 style='color: #2c3e50;'>{model['id']}</h4>
535
+ <p style='color: #7f8c8d;'>โฌ‡๏ธ Downloads: {format(model['downloads'], ',')}</p>
536
+ <p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {format(model['likes'], ',')}</p>
537
+ <a href='{target_models[model['id']]}'
538
+ target='_blank'
539
+ style='
540
+ display: inline-block;
541
+ padding: 8px 16px;
542
+ background: #3498db;
543
+ color: white;
544
+ text-decoration: none;
545
+ border-radius: 5px;
546
+ transition: background 0.3s;
547
+ '>
548
+ Visit Model ๐Ÿ”—
549
+ </a>
550
+ </div>
551
+ """
552
+
553
+ html_content += "</div></div>"
554
+
555
+ # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
556
+ df = pd.DataFrame([{
557
+ 'Global Rank': f"#{m['global_rank']}" if isinstance(m['global_rank'], (int, float)) else m['global_rank'],
558
+ 'Model ID': m['id'],
559
+ 'Title': m['title'],
560
+ 'Downloads': format(m['downloads'], ','),
561
+ 'Likes': format(m['likes'], ','),
562
+ 'URL': target_models[m['id']]
563
+ } for m in filtered_models])
564
+
565
+ progress(1.0, desc="Complete!")
566
+ return fig, html_content, df
567
+
568
+ except Exception as e:
569
+ print(f"Error in get_models_data: {str(e)}")
570
+ return create_error_plot(), f"<div>์—๋Ÿฌ ๋ฐœ์ƒ: {str(e)}</div>", pd.DataFrame()
571
+
572
+
573
+ # ๊ด€์‹ฌ ์ŠคํŽ˜์ด์Šค URL ๋ฆฌ์ŠคํŠธ์™€ ์ •๋ณด
574
+ target_spaces = {
575
+
576
+ "openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
577
+ "ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
578
+ "ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
579
+ "fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
580
+ "fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
581
+ "ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
582
+ "fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
583
+ "ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
584
+ "aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
585
+ "openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
586
+ "openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
587
+ "VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
588
+ "kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
589
+ "ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
590
+ "openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
591
+ "cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
592
+ "openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
593
+ "VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
594
+ "ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
595
+ "aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
596
+ "openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
597
+ "kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
598
+ "openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
599
+ "ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
600
+ "VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
601
+ "kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
602
+ "fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
603
+ "kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
604
+ "VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
605
+ "upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
606
+ "LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
607
+
608
+ "cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
609
+ "kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
610
+ "kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
611
+ "kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
612
+ "etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
613
+ "etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
614
+ "naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
615
+
616
+ "NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
617
+ }
618
+
619
+ def get_spaces_data(sort_type="trending", progress=gr.Progress()):
620
+ """์ŠคํŽ˜์ด์Šค ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ (trending ๋˜๋Š” modes)"""
621
+ url = "https://huggingface.co/api/spaces"
622
+ params = {
623
+ 'full': 'true',
624
+ 'limit': 400
625
+ }
626
+
627
+ if sort_type == "modes":
628
+ params['sort'] = 'likes'
629
+
630
+ try:
631
+ progress(0, desc=f"Fetching {sort_type} spaces data...")
632
+ response = requests.get(url, params=params)
633
+ response.raise_for_status()
634
+ all_spaces = response.json()
635
+
636
+ # ์ˆœ์œ„ ์ •๋ณด ์ €์žฅ
637
+ space_ranks = {}
638
+ for idx, space in enumerate(all_spaces, 1):
639
+ space_id = space.get('id', '')
640
+ if space_id in target_spaces:
641
+ space['rank'] = idx
642
+ space_ranks[space_id] = space
643
+
644
+ spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
645
+ spaces.sort(key=lambda x: x['rank'])
646
+
647
+ progress(0.3, desc="Creating visualization...")
648
+
649
+ # ์‹œ๊ฐํ™” ์ƒ์„ฑ
650
+ fig = go.Figure()
651
+
652
+ # ๋ฐ์ดํ„ฐ ์ค€๋น„
653
+ ids = [space['id'] for space in spaces]
654
+ ranks = [space['rank'] for space in spaces]
655
+ likes = [space.get('likes', 0) for space in spaces]
656
+ titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
657
+
658
+ # ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
659
+ fig.add_trace(go.Bar(
660
+ x=ids,
661
+ y=ranks,
662
+ text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
663
+ for r, t, l in zip(ranks, titles, likes)],
664
+ textposition='auto',
665
+ marker_color='rgb(158,202,225)',
666
+ opacity=0.8
667
+ ))
668
+
669
+ fig.update_layout(
670
+ title={
671
+ 'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 400)',
672
+ 'y':0.95,
673
+ 'x':0.5,
674
+ 'xanchor': 'center',
675
+ 'yanchor': 'top'
676
+ },
677
+ xaxis_title='Space ID',
678
+ yaxis_title='Rank',
679
+ yaxis=dict(
680
+ autorange='reversed', # Y์ถ•์„ ๋ฐ˜์ „
681
+ tickmode='array',
682
+ ticktext=[str(i) for i in range(1, 401, 20)], # 1๋ถ€ํ„ฐ 400๊นŒ์ง€ 20 ๊ฐ„๊ฒฉ์œผ๋กœ ํ‘œ์‹œ
683
+ tickvals=[i for i in range(1, 401, 20)],
684
+ range=[1, 400] # Y์ถ• ๋ฒ”์œ„๋ฅผ 1๋ถ€ํ„ฐ 400๊นŒ์ง€๋กœ ์„ค์ •
685
+ ),
686
+ height=800,
687
+ showlegend=False,
688
+ template='plotly_white',
689
+ xaxis_tickangle=-45
690
+ )
691
+
692
+ progress(0.6, desc="Creating space cards...")
693
+
694
+ # HTML ์นด๋“œ ์ƒ์„ฑ
695
+ html_content = f"""
696
+ <div style='padding: 20px; background: #f5f5f5;'>
697
+ <h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
698
+ <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
699
+ """
700
+
701
+ for space in spaces:
702
+ space_id = space['id']
703
+ rank = space['rank']
704
+ title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
705
+ likes = space.get('likes', 0)
706
+
707
+ html_content += f"""
708
+ <div style='
709
+ background: white;
710
+ padding: 20px;
711
+ border-radius: 10px;
712
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
713
+ transition: transform 0.2s;
714
+ '>
715
+ <h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
716
+ <h4 style='
717
+ color: #2980b9;
718
+ margin: 10px 0;
719
+ font-size: 1.2em;
720
+ font-weight: bold;
721
+ text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
722
+ background: linear-gradient(to right, #3498db, #2980b9);
723
+ -webkit-background-clip: text;
724
+ -webkit-text-fill-color: transparent;
725
+ padding: 5px 0;
726
+ '>{title}</h4>
727
+ <p style='color: #7f8c8d; margin-bottom: 10px;'>๐Ÿ‘ Likes: {likes}</p>
728
+ <a href='{target_spaces[space_id]}'
729
+ target='_blank'
730
+ style='
731
+ display: inline-block;
732
+ padding: 8px 16px;
733
+ background: #3498db;
734
+ color: white;
735
+ text-decoration: none;
736
+ border-radius: 5px;
737
+ transition: background 0.3s;
738
+ '>
739
+ Visit Space ๐Ÿ”—
740
+ </a>
741
+ </div>
742
+ """
743
+
744
+ html_content += "</div></div>"
745
+
746
+ # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
747
+ df = pd.DataFrame([{
748
+ 'Rank': space['rank'],
749
+ 'Space ID': space['id'],
750
+ 'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
751
+ 'Likes': space.get('likes', 0),
752
+ 'URL': target_spaces[space['id']]
753
+ } for space in spaces])
754
+
755
+ progress(1.0, desc="Complete!")
756
+ return fig, html_content, df
757
+
758
+ except Exception as e:
759
+ print(f"Error in get_spaces_data: {str(e)}")
760
+ error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
761
+ error_plot = create_error_plot()
762
+ return error_plot, error_html, pd.DataFrame()
763
+
764
+
765
+ def create_trend_visualization(spaces_data):
766
+ if not spaces_data:
767
+ return create_error_plot()
768
+
769
+ fig = go.Figure()
770
+
771
+ # ์ˆœ์œ„ ๋ฐ์ดํ„ฐ ์ค€๋น„
772
+ ranks = []
773
+ for idx, space in enumerate(spaces_data, 1):
774
+ space_id = space.get('id', '')
775
+ if space_id in target_spaces:
776
+ ranks.append({
777
+ 'id': space_id,
778
+ 'rank': idx,
779
+ 'likes': space.get('likes', 0),
780
+ 'title': space.get('title', 'N/A'),
781
+ 'views': space.get('views', 0)
782
+ })
783
+
784
+ if not ranks:
785
+ return create_error_plot()
786
+
787
+ # ์ˆœ์œ„๋ณ„๋กœ ์ •๋ ฌ
788
+ ranks.sort(key=lambda x: x['rank'])
789
+
790
+ # ํ”Œ๋กฏ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
791
+ ids = [r['id'] for r in ranks]
792
+ rank_values = [r['rank'] for r in ranks]
793
+ likes = [r['likes'] for r in ranks]
794
+ views = [r['views'] for r in ranks]
795
+
796
+ # ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
797
+ fig.add_trace(go.Bar(
798
+ x=ids,
799
+ y=rank_values,
800
+ text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
801
+ textposition='auto',
802
+ marker_color='rgb(158,202,225)',
803
+ opacity=0.8
804
+ ))
805
+
806
+ fig.update_layout(
807
+ title={
808
+ 'text': 'Current Trending Ranks (All Target Spaces)',
809
+ 'y':0.95,
810
+ 'x':0.5,
811
+ 'xanchor': 'center',
812
+ 'yanchor': 'top'
813
+ },
814
+ xaxis_title='Space ID',
815
+ yaxis_title='Trending Rank',
816
+ yaxis_autorange='reversed',
817
+ height=800,
818
+ showlegend=False,
819
+ template='plotly_white',
820
+ xaxis_tickangle=-45
821
+ )
822
+
823
+ return fig
824
+
825
+ # ํ† ํฐ์ด ์—†๋Š” ๊ฒฝ์šฐ๋ฅผ ์œ„ํ•œ ๋Œ€์ฒด ํ•จ์ˆ˜
826
+ def get_trending_spaces_without_token():
827
+ try:
828
+ url = "https://huggingface.co/api/spaces"
829
+ params = {
830
+ 'sort': 'likes',
831
+ 'direction': -1,
832
+ 'limit': 400,
833
+ 'full': 'true'
834
+ }
835
+
836
+ response = requests.get(url, params=params)
837
+
838
+ if response.status_code == 200:
839
+ return response.json()
840
+ else:
841
+ print(f"API ์š”์ฒญ ์‹คํŒจ (ํ† ํฐ ์—†์Œ): {response.status_code}")
842
+ print(f"Response: {response.text}")
843
+ return None
844
+ except Exception as e:
845
+ print(f"API ํ˜ธ์ถœ ์ค‘ ์—๋Ÿฌ ๋ฐœ์ƒ (ํ† ํฐ ์—†์Œ): {str(e)}")
846
+ return None
847
+
848
+ # API ํ† ํฐ ์„ค์ • ๋ฐ ํ•จ์ˆ˜ ์„ ํƒ
849
+ if not HF_TOKEN:
850
+ get_trending_spaces = get_trending_spaces_without_token
851
+
852
+
853
+
854
+ def create_error_plot():
855
+ fig = go.Figure()
856
+ fig.add_annotation(
857
+ text="๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\n(API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค)",
858
+ xref="paper",
859
+ yref="paper",
860
+ x=0.5,
861
+ y=0.5,
862
+ showarrow=False,
863
+ font=dict(size=20)
864
+ )
865
+ fig.update_layout(
866
+ title="Error Loading Data",
867
+ height=400
868
+ )
869
+ return fig
870
+
871
+
872
+ def create_space_info_html(spaces_data):
873
+ if not spaces_data:
874
+ return "<div style='padding: 20px;'><h2>๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๋Š”๋ฐ ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.</h2></div>"
875
+
876
+ html_content = """
877
+ <div style='padding: 20px;'>
878
+ <h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
879
+ <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
880
+ """
881
+
882
+ # ๋ชจ๋“  target spaces๋ฅผ ํฌํ•จํ•˜๋„๋ก ์ˆ˜์ •
883
+ for space_id in target_spaces.keys():
884
+ space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
885
+ if space_info:
886
+ rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
887
+ html_content += f"""
888
+ <div style='
889
+ background: white;
890
+ padding: 20px;
891
+ border-radius: 10px;
892
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
893
+ transition: transform 0.2s;
894
+ '>
895
+ <h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
896
+ <p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {space_info.get('likes', 'N/A')}</p>
897
+ <p style='color: #7f8c8d;'>๐Ÿ‘€ Views: {space_info.get('views', 'N/A')}</p>
898
+ <p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
899
+ <p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
900
+ <a href='{target_spaces[space_id]}'
901
+ target='_blank'
902
+ style='
903
+ display: inline-block;
904
+ padding: 8px 16px;
905
+ background: #3498db;
906
+ color: white;
907
+ text-decoration: none;
908
+ border-radius: 5px;
909
+ transition: background 0.3s;
910
+ '>
911
+ Visit Space ๐Ÿ”—
912
+ </a>
913
+ </div>
914
+ """
915
+ else:
916
+ html_content += f"""
917
+ <div style='
918
+ background: #f8f9fa;
919
+ padding: 20px;
920
+ border-radius: 10px;
921
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
922
+ '>
923
+ <h3 style='color: #34495e;'>{space_id}</h3>
924
+ <p style='color: #7f8c8d;'>Not in trending</p>
925
+ <a href='{target_spaces[space_id]}'
926
+ target='_blank'
927
+ style='
928
+ display: inline-block;
929
+ padding: 8px 16px;
930
+ background: #95a5a6;
931
+ color: white;
932
+ text-decoration: none;
933
+ border-radius: 5px;
934
+ '>
935
+ Visit Space ๐Ÿ”—
936
+ </a>
937
+ </div>
938
+ """
939
+
940
+ html_content += "</div></div>"
941
+ return html_content
942
+
943
+ def create_data_table(spaces_data):
944
+ if not spaces_data:
945
+ return pd.DataFrame()
946
+
947
+ rows = []
948
+ for idx, space in enumerate(spaces_data, 1):
949
+ space_id = space.get('id', '')
950
+ if space_id in target_spaces:
951
+ rows.append({
952
+ 'Rank': idx,
953
+ 'Space ID': space_id,
954
+ 'Likes': space.get('likes', 'N/A'),
955
+ 'Title': space.get('title', 'N/A'),
956
+ 'URL': target_spaces[space_id]
957
+ })
958
+
959
+ return pd.DataFrame(rows)
960
+
961
+ def refresh_data():
962
+ spaces_data = get_trending_spaces()
963
+ if spaces_data:
964
+ plot = create_trend_visualization(spaces_data)
965
+ info = create_space_info_html(spaces_data)
966
+ df = create_data_table(spaces_data)
967
+ return plot, info, df
968
+ else:
969
+ return create_error_plot(), "<div>API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.</div>", pd.DataFrame()
970
+
971
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
972
+ gr.Markdown("""
973
+ # ๐Ÿค— ํ—ˆ๊น…ํŽ˜์ด์Šค 'ํ•œ๊ตญ(์–ธ์–ด) ๋ฆฌ๋”๋ณด๋“œ'
974
+ HuggingFace๊ฐ€ ์ œ๊ณตํ•˜๋Š” Spaces์™€ Models ์‹ค์‹œ๊ฐ„ ์ธ๊ธฐ ์ˆœ์œ„๋ฅผ ๋ฐ˜์˜: ํ•œ๊ตญ์ธ(๊ธฐ์—…)์ด ๊ณต๊ฐœ, ํ•œ๊ตญ 'LLM ๋ฆฌ๋”๋ณด๋“œ' ๋ฐ TAG ๋“ฑ์„ ์ฐธ๊ณ ํ•ด ๋ฆฌ์ŠคํŠธ ๊ฐฑ์‹ . ์‹ ๊ทœ ๋“ฑ๋ก ์š”์ฒญ: arxivgpt@gmail.com
975
+ """)
976
+
977
+ # ์ƒˆ๋กœ ๊ณ ์นจ ๋ฒ„ํŠผ์„ ์ƒ๋‹จ์œผ๋กœ ์ด๋™ํ•˜๊ณ  ํ•œ๊ธ€๋กœ ๋ณ€๊ฒฝ
978
+ refresh_btn = gr.Button("๐Ÿ”„ ์ƒˆ๋กœ ๊ณ ์นจ", variant="primary")
979
+
980
+ with gr.Tab("Spaces Trending"):
981
+ trending_plot = gr.Plot()
982
+ trending_info = gr.HTML()
983
+ trending_df = gr.DataFrame()
984
+
985
+ with gr.Tab("Models Trending"):
986
+ models_plot = gr.Plot()
987
+ models_info = gr.HTML()
988
+ models_df = gr.DataFrame()
989
+
990
+ def refresh_all_data():
991
+ spaces_results = get_spaces_data("trending")
992
+ models_results = get_models_data()
993
+ return [*spaces_results, *models_results]
994
+
995
+ refresh_btn.click(
996
+ refresh_all_data,
997
+ outputs=[
998
+ trending_plot, trending_info, trending_df,
999
+ models_plot, models_info, models_df
1000
+ ]
1001
+ )
1002
+
1003
+ # ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ ๋กœ๋“œ
1004
+ spaces_results = get_spaces_data("trending")
1005
+ models_results = get_models_data()
1006
+
1007
+ trending_plot.value, trending_info.value, trending_df.value = spaces_results
1008
+ models_plot.value, models_info.value, models_df.value = models_results
1009
+
1010
+
1011
+ # Gradio ์•ฑ ์‹คํ–‰
1012
+ demo.launch(
1013
+ server_name="0.0.0.0",
1014
+ server_port=7860,
1015
+ share=False
1016
+ )