Korean-Leaderboard / app-backup-datasets.py
openfree's picture
Rename app.py to app-backup-datasets.py
2075fdd verified
raw
history blame
69.7 kB
import gradio as gr
import requests
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
import os
HF_TOKEN = os.getenv("HF_TOKEN")
target_models = {
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
"seawolf2357/ntower": "https://huggingface.co/seawolf2357/ntower",
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
"moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
"OnomaAIResearch/Illustrious-xl-early-release-v0": "https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0",
"upstage/solar-pro-preview-instruct": "https://huggingface.co/upstage/solar-pro-preview-instruct",
"NCSOFT/VARCO-VISION-14B": "https://huggingface.co/NCSOFT/VARCO-VISION-14B",
"NCSOFT/Llama-VARCO-8B-Instruct": "https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct",
"NCSOFT/VARCO-VISION-14B-HF": "https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF",
"KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B": "https://huggingface.co/KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B",
"dnotitia/Llama-DNA-1.0-8B-Instruct": "https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct",
"Bllossom/llama-3.2-Korean-Bllossom-3B": "https://huggingface.co/Bllossom/llama-3.2-Korean-Bllossom-3B",
"unidocs/llama-3.1-8b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.1-8b-komedic-instruct",
"unidocs/llama-3.2-3b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.2-3b-komedic-instruct",
"etri-lirs/eagle-3b-preview": "https://huggingface.co/etri-lirs/eagle-3b-preview",
"kakaobrain/kogpt": "https://huggingface.co/kakaobrain/kogpt",
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
}
def get_korea_models():
"""Korea ๊ด€๋ จ ๋ชจ๋ธ ๊ฒ€์ƒ‰"""
params = {
"search": "korea",
"full": "True",
"config": "True",
"limit": 1000
}
try:
response = requests.get(
"https://huggingface.co/api/models",
headers={'Accept': 'application/json'},
params=params
)
if response.status_code == 200:
return response.json()
else:
print(f"Failed to fetch Korea models: {response.status_code}")
return []
except Exception as e:
print(f"Error fetching Korea models: {str(e)}")
return []
def get_all_models(limit=3000):
"""๋ชจ๋“  ๋ชจ๋ธ๊ณผ Korea ๊ด€๋ จ ๋ชจ๋ธ ๊ฐ€์ ธ์˜ค๊ธฐ"""
all_models = []
page_size = 1000 # API์˜ ํ•œ ๋ฒˆ ์š”์ฒญ๋‹น ์ตœ๋Œ€ ํฌ๊ธฐ
# ์—ฌ๋Ÿฌ ํŽ˜์ด์ง€์— ๊ฑธ์ณ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘
for offset in range(0, limit, page_size):
params = {
'limit': min(page_size, limit - offset),
'full': 'True',
'config': 'True',
'offset': offset
}
response = requests.get(
"https://huggingface.co/api/models",
headers={'Accept': 'application/json'},
params=params
)
if response.status_code == 200:
all_models.extend(response.json())
print(f"Fetched models {offset+1} to {offset+len(response.json())}")
else:
print(f"Failed to fetch models at offset {offset}: {response.status_code}")
break
# Korea ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋„ ๋™์ผํ•˜๊ฒŒ ํ™•์žฅ
korea_params = {
"search": "korea",
"full": "True",
"config": "True",
"limit": limit
}
korea_response = requests.get(
"https://huggingface.co/api/models",
headers={'Accept': 'application/json'},
params=korea_params
)
if korea_response.status_code == 200:
korea_models = korea_response.json()
print(f"Fetched {len(korea_models)} Korea-related models")
# ์ค‘๋ณต ์ œ๊ฑฐํ•˜๋ฉด์„œ Korea ๋ชจ๋ธ ์ถ”๊ฐ€
existing_ids = {model.get('id', '') for model in all_models}
for model in korea_models:
if model.get('id', '') not in existing_ids:
all_models.append(model)
existing_ids.add(model.get('id', ''))
print(f"Total unique models: {len(all_models)}")
return all_models[:limit]
def get_models_data(progress=gr.Progress()):
def calculate_rank(model_id, all_global_models, korea_models):
# ๊ธ€๋กœ๋ฒŒ ์ˆœ์œ„ ํ™•์ธ
global_rank = next((idx for idx, m in enumerate(all_global_models, 1)
if m.get('id', '').strip() == model_id.strip()), None)
# Korea ๋ชจ๋ธ์ธ ๊ฒฝ์šฐ
is_korea = any(m.get('id', '').strip() == model_id.strip() for m in korea_models)
if is_korea:
# Korea ๋ชจ๋ธ ์ค‘์—์„œ์˜ ์ˆœ์œ„ ํ™•์ธ
korea_rank = next((idx for idx, m in enumerate(korea_models, 1)
if m.get('id', '').strip() == model_id.strip()), None)
if korea_rank:
return min(global_rank or 3001, korea_rank + 1000), True
return global_rank if global_rank else 'Not in top 3000', is_korea
try:
progress(0, desc="Fetching models...")
if not HF_TOKEN:
fig = create_error_plot()
error_html = """
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
<h3 style='color: #c00;'>โš ๏ธ API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค</h3>
<p>HuggingFace API ํ† ํฐ์ด ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์™„์ „ํ•œ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” API ํ† ํฐ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.</p>
</div>
"""
empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
return fig, error_html, empty_df
# ์ผ๋ฐ˜ ๋ชจ๋ธ๊ณผ Korea ๊ด€๋ จ ๋ชจ๋ธ ๋ชจ๋‘ ๊ฐ€์ ธ์˜ค๊ธฐ (3000์œ„๊นŒ์ง€)
all_global_models = get_all_models(limit=3000)
korea_models = get_korea_models()
print(f"Total global models fetched: {len(all_global_models)}")
print(f"Total Korea models fetched: {len(korea_models)}")
# ๋ชจ๋“  ๋ชจ๋ธ ํ†ตํ•ฉ (์ค‘๋ณต ์ œ๊ฑฐ)
all_models = all_global_models.copy()
existing_ids = {model.get('id', '') for model in all_global_models}
added_korea_models = 0
for korea_model in korea_models:
if korea_model.get('id', '') not in existing_ids:
all_models.append(korea_model)
existing_ids.add(korea_model.get('id', ''))
added_korea_models += 1
print(f"Added {added_korea_models} unique Korea models")
print(f"Total combined models: {len(all_models)}")
# ์‹œ๊ฐํ™”๋ฅผ ์œ„ํ•œ Figure ์ƒ์„ฑ
fig = go.Figure()
# ์ˆœ์œ„ ์ •๋ณด ์ˆ˜์ง‘
filtered_models = []
for model_id in target_models.keys():
try:
normalized_id = model_id.strip('/')
model_url_api = f"https://huggingface.co/api/models/{normalized_id}"
response = requests.get(
model_url_api,
headers={'Accept': 'application/json'}
)
if response.status_code == 200:
model_data = response.json()
rank, is_korea = calculate_rank(model_id, all_global_models, korea_models)
filtered_models.append({
'id': model_id,
'global_rank': rank,
'downloads': model_data.get('downloads', 0),
'likes': model_data.get('likes', 0),
'title': model_data.get('title', 'No Title'),
'is_korea': is_korea
})
print(f"Model {model_id}: Rank={rank}, Is Korea={is_korea}")
else:
filtered_models.append({
'id': model_id,
'global_rank': 'Not in top 3000',
'downloads': 0,
'likes': 0,
'title': 'No Title',
'is_korea': False
})
except Exception as e:
print(f"Error processing {model_id}: {str(e)}")
continue
# ์ˆœ์œ„๋กœ ์ •๋ ฌ
filtered_models.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
# ์‹œ๊ฐํ™” ๋ฐ์ดํ„ฐ ์ค€๋น„
valid_models = [m for m in filtered_models if isinstance(m['global_rank'], (int, float))]
if valid_models:
ids = [m['id'] for m in valid_models]
ranks = [m['global_rank'] for m in valid_models]
fig.add_trace(go.Bar(
x=ids,
y=[3001 - r for r in ranks], # Y์ถ• ๋ฒ”์œ„ 3000๊นŒ์ง€ ํ™•์žฅ
text=[f"Rank: #{r}<br>Downloads: {format(m['downloads'], ',')}<br>Likes: {format(m['likes'], ',')}"
for r, m in zip(ranks, valid_models)],
textposition='auto',
marker_color=['rgba(255,0,0,0.6)' if m['is_korea'] else 'rgba(0,0,255,0.6)'
for m in valid_models],
opacity=0.8
))
fig.update_layout(
title="HuggingFace Models Global Rankings (Up to #3000)",
xaxis_title="Model ID",
yaxis_title="Global Rank",
yaxis=dict(
ticktext=[f"#{i}" for i in range(1, 3001, 100)],
tickvals=[3001 - i for i in range(1, 3001, 100)],
range=[0, 3000]
),
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
# HTML ์นด๋“œ ์ƒ์„ฑ
html_content = """
<div style='padding: 20px; background: #f5f5f5;'>
<h2 style='color: #2c3e50;'>Models Rankings (Up to #3000)</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
for model in filtered_models:
rank_display = f"Global Rank #{model['global_rank']}" if isinstance(model['global_rank'], (int, float)) else "Not in top 3000"
korea_badge = "๐Ÿ‡ฐ๐Ÿ‡ท Korea Search Result" if model['is_korea'] else ""
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
{f"border: 2px solid #e74c3c;" if model['is_korea'] else ""}
'>
<h3 style='color: #34495e;'>{rank_display}</h3>
<h4 style='color: #2c3e50;'>{model['id']}</h4>
<p style='color: #e74c3c; font-weight: bold;'>{korea_badge}</p>
<p style='color: #7f8c8d;'>โฌ‡๏ธ Downloads: {format(model['downloads'], ',')}</p>
<p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {format(model['likes'], ',')}</p>
<a href='{target_models[model['id']]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Model ๐Ÿ”—
</a>
</div>
"""
html_content += "</div></div>"
# ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
df = pd.DataFrame([{
'Global Rank': f"#{m['global_rank']}" if isinstance(m['global_rank'], (int, float)) else m['global_rank'],
'Model ID': m['id'],
'Title': m['title'],
'Downloads': format(m['downloads'], ','),
'Likes': format(m['likes'], ','),
'Korea Search': '๐Ÿ‡ฐ๐Ÿ‡ท' if m['is_korea'] else '',
'URL': target_models[m['id']]
} for m in filtered_models])
progress(1.0, desc="Complete!")
return fig, html_content, df
except Exception as e:
print(f"Error in get_models_data: {str(e)}")
error_fig = create_error_plot()
error_html = f"""
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
<h3 style='color: #c00;'>โš ๏ธ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค</h3>
<p>{str(e)}</p>
</div>
"""
empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
return error_fig, error_html, empty_df
# ๊ด€์‹ฌ ์ŠคํŽ˜์ด์Šค URL ๋ฆฌ์ŠคํŠธ์™€ ์ •๋ณด
target_spaces = {
"fantos/x-mas": "https://huggingface.co/spaces/fantos/x-mas",
"openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
"r3gm/DiffuseCraft": "https://huggingface.co/spaces/r3gm/DiffuseCraft",
"LeeSangHoon/HierSpeech_TTS": "https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS",
"etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
"etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
"cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
"kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
"kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
"kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
"etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
"etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
"naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}
def get_spaces_data(sort_type="trending", progress=gr.Progress()):
"""์ŠคํŽ˜์ด์Šค ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ (trending ๋˜๋Š” modes)"""
url = "https://huggingface.co/api/spaces"
params = {
'full': 'true',
'limit': 500
}
if sort_type == "modes":
params['sort'] = 'likes'
try:
progress(0, desc=f"Fetching {sort_type} spaces data...")
response = requests.get(url, params=params)
response.raise_for_status()
all_spaces = response.json()
# ์ˆœ์œ„ ์ •๋ณด ์ €์žฅ
space_ranks = {}
for idx, space in enumerate(all_spaces, 1):
space_id = space.get('id', '')
if space_id in target_spaces:
space['rank'] = idx
space_ranks[space_id] = space
spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
spaces.sort(key=lambda x: x['rank'])
progress(0.3, desc="Creating visualization...")
# ์‹œ๊ฐํ™” ์ƒ์„ฑ
fig = go.Figure()
# ๋ฐ์ดํ„ฐ ์ค€๋น„
ids = [space['id'] for space in spaces]
ranks = [space['rank'] for space in spaces]
likes = [space.get('likes', 0) for space in spaces]
titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
# ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
fig.add_trace(go.Bar(
x=ids,
y=ranks,
text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
for r, t, l in zip(ranks, titles, likes)],
textposition='auto',
marker_color='rgb(158,202,225)',
opacity=0.8
))
fig.update_layout(
title={
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 500)',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Space ID',
yaxis_title='Rank',
yaxis=dict(
autorange='reversed', # Y์ถ•์„ ๋ฐ˜์ „
tickmode='array',
ticktext=[str(i) for i in range(1, 501, 20)], # 1๋ถ€ํ„ฐ 400๊นŒ์ง€ 20 ๊ฐ„๊ฒฉ์œผ๋กœ ํ‘œ์‹œ
tickvals=[i for i in range(1, 501, 20)],
range=[1, 500] # Y์ถ• ๋ฒ”์œ„๋ฅผ 1๋ถ€ํ„ฐ 400๊นŒ์ง€๋กœ ์„ค์ •
),
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
progress(0.6, desc="Creating space cards...")
# HTML ์นด๋“œ ์ƒ์„ฑ
html_content = f"""
<div style='padding: 20px; background: #f5f5f5;'>
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
for space in spaces:
space_id = space['id']
rank = space['rank']
title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
likes = space.get('likes', 0)
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
'>
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
<h4 style='
color: #2980b9;
margin: 10px 0;
font-size: 1.2em;
font-weight: bold;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
background: linear-gradient(to right, #3498db, #2980b9);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
padding: 5px 0;
'>{title}</h4>
<p style='color: #7f8c8d; margin-bottom: 10px;'>๐Ÿ‘ Likes: {likes}</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Space ๐Ÿ”—
</a>
</div>
"""
html_content += "</div></div>"
# ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
df = pd.DataFrame([{
'Rank': space['rank'],
'Space ID': space['id'],
'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
'Likes': space.get('likes', 0),
'URL': target_spaces[space['id']]
} for space in spaces])
progress(1.0, desc="Complete!")
return fig, html_content, df
except Exception as e:
print(f"Error in get_spaces_data: {str(e)}")
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
error_plot = create_error_plot()
return error_plot, error_html, pd.DataFrame()
def create_trend_visualization(spaces_data):
if not spaces_data:
return create_error_plot()
fig = go.Figure()
# ์ˆœ์œ„ ๋ฐ์ดํ„ฐ ์ค€๋น„
ranks = []
for idx, space in enumerate(spaces_data, 1):
space_id = space.get('id', '')
if space_id in target_spaces:
ranks.append({
'id': space_id,
'rank': idx,
'likes': space.get('likes', 0),
'title': space.get('title', 'N/A'),
'views': space.get('views', 0)
})
if not ranks:
return create_error_plot()
# ์ˆœ์œ„๋ณ„๋กœ ์ •๋ ฌ
ranks.sort(key=lambda x: x['rank'])
# ํ”Œ๋กฏ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
ids = [r['id'] for r in ranks]
rank_values = [r['rank'] for r in ranks]
likes = [r['likes'] for r in ranks]
views = [r['views'] for r in ranks]
# ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
fig.add_trace(go.Bar(
x=ids,
y=rank_values,
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
textposition='auto',
marker_color='rgb(158,202,225)',
opacity=0.8
))
fig.update_layout(
title={
'text': 'Current Trending Ranks (All Target Spaces)',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Space ID',
yaxis_title='Trending Rank',
yaxis_autorange='reversed',
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
return fig
# ํ† ํฐ์ด ์—†๋Š” ๊ฒฝ์šฐ๋ฅผ ์œ„ํ•œ ๋Œ€์ฒด ํ•จ์ˆ˜
def get_trending_spaces_without_token():
try:
url = "https://huggingface.co/api/spaces"
params = {
'sort': 'likes',
'direction': -1,
'limit': 500,
'full': 'true'
}
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"API ์š”์ฒญ ์‹คํŒจ (ํ† ํฐ ์—†์Œ): {response.status_code}")
print(f"Response: {response.text}")
return None
except Exception as e:
print(f"API ํ˜ธ์ถœ ์ค‘ ์—๋Ÿฌ ๋ฐœ์ƒ (ํ† ํฐ ์—†์Œ): {str(e)}")
return None
# API ํ† ํฐ ์„ค์ • ๋ฐ ํ•จ์ˆ˜ ์„ ํƒ
if not HF_TOKEN:
get_trending_spaces = get_trending_spaces_without_token
def create_error_plot():
fig = go.Figure()
fig.add_annotation(
text="๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\n(API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค)",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="Error Loading Data",
height=400
)
return fig
def create_space_info_html(spaces_data):
if not spaces_data:
return "<div style='padding: 20px;'><h2>๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๋Š”๋ฐ ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.</h2></div>"
html_content = """
<div style='padding: 20px;'>
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
# ๋ชจ๋“  target spaces๋ฅผ ํฌํ•จํ•˜๋„๋ก ์ˆ˜์ •
for space_id in target_spaces.keys():
space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
if space_info:
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
'>
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
<p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {space_info.get('likes', 'N/A')}</p>
<p style='color: #7f8c8d;'>๐Ÿ‘€ Views: {space_info.get('views', 'N/A')}</p>
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Space ๐Ÿ”—
</a>
</div>
"""
else:
html_content += f"""
<div style='
background: #f8f9fa;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
'>
<h3 style='color: #34495e;'>{space_id}</h3>
<p style='color: #7f8c8d;'>Not in trending</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #95a5a6;
color: white;
text-decoration: none;
border-radius: 5px;
'>
Visit Space ๐Ÿ”—
</a>
</div>
"""
html_content += "</div></div>"
return html_content
def create_data_table(spaces_data):
if not spaces_data:
return pd.DataFrame()
rows = []
for idx, space in enumerate(spaces_data, 1):
space_id = space.get('id', '')
if space_id in target_spaces:
rows.append({
'Rank': idx,
'Space ID': space_id,
'Likes': space.get('likes', 'N/A'),
'Title': space.get('title', 'N/A'),
'URL': target_spaces[space_id]
})
return pd.DataFrame(rows)
def refresh_data():
spaces_data = get_trending_spaces()
if spaces_data:
plot = create_trend_visualization(spaces_data)
info = create_space_info_html(spaces_data)
df = create_data_table(spaces_data)
return plot, info, df
else:
return create_error_plot(), "<div>API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.</div>", pd.DataFrame()
target_datasets = {
"aiqtech/kolaw": "https://huggingface.co/datasets/aiqtech/kolaw"
# ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ์…‹ ์ถ”๊ฐ€
}
def get_korea_datasets():
"""Korea ๊ด€๋ จ ๋ฐ์ดํ„ฐ์…‹ ๊ฒ€์ƒ‰"""
params = {
"search": "korea",
"full": "True",
"limit": 10000
}
try:
response = requests.get(
"https://huggingface.co/api/datasets",
headers={'Accept': 'application/json'}, # Authorization ๋Œ€์‹  Accept ํ—ค๋” ์‚ฌ์šฉ
params=params
)
if response.status_code == 200:
korea_datasets = response.json()
print(f"Found {len(korea_datasets)} Korea-related datasets")
return korea_datasets
else:
print(f"Failed to fetch Korea datasets: {response.status_code}")
return []
except Exception as e:
print(f"Error fetching Korea datasets: {str(e)}")
return []
def get_all_datasets(limit=10000):
"""๋ชจ๋“  ๋ฐ์ดํ„ฐ์…‹๊ณผ Korea ๊ด€๋ จ ๋ฐ์ดํ„ฐ์…‹ ๊ฐ€์ ธ์˜ค๊ธฐ"""
all_datasets = []
page_size = 1000
for offset in range(0, limit, page_size):
params = {
'limit': min(page_size, limit - offset),
'full': 'True',
'offset': offset
}
response = requests.get(
"https://huggingface.co/api/datasets",
headers={'Accept': 'application/json'}, # Authorization ๋Œ€์‹  Accept ํ—ค๋” ์‚ฌ์šฉ
params=params
)
if response.status_code == 200:
all_datasets.extend(response.json())
print(f"Fetched datasets {offset+1} to {offset+len(response.json())}")
else:
print(f"Failed to fetch datasets at offset {offset}: {response.status_code}")
break
# Korea ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋„ ๋™์ผํ•˜๊ฒŒ ํ™•์žฅ
korea_params = {
"search": "korea",
"full": "True",
"limit": limit
}
korea_response = requests.get(
"https://huggingface.co/api/datasets",
headers={'Accept': 'application/json'}, # Authorization ๋Œ€์‹  Accept ํ—ค๋” ์‚ฌ์šฉ
params=korea_params
)
if korea_response.status_code == 200:
korea_datasets = korea_response.json()
print(f"Fetched {len(korea_datasets)} Korea-related datasets")
# ์ค‘๋ณต ์ œ๊ฑฐํ•˜๋ฉด์„œ Korea ๋ฐ์ดํ„ฐ์…‹ ์ถ”๊ฐ€
existing_ids = {dataset.get('id', '') for dataset in all_datasets}
for dataset in korea_datasets:
if dataset.get('id', '') not in existing_ids:
all_datasets.append(dataset)
existing_ids.add(dataset.get('id', ''))
print(f"Total unique datasets: {len(all_datasets)}")
return all_datasets[:limit]
def get_datasets_data(progress=gr.Progress()):
def calculate_rank(dataset_id, all_global_datasets, korea_datasets):
# ๊ธ€๋กœ๋ฒŒ ์ˆœ์œ„ ํ™•์ธ
global_rank = next((idx for idx, d in enumerate(all_global_datasets, 1)
if d.get('id', '').strip() == dataset_id.strip()), None)
# Korea ๋ฐ์ดํ„ฐ์…‹์ธ ๊ฒฝ์šฐ
is_korea = any(d.get('id', '').strip() == dataset_id.strip() for d in korea_datasets)
if is_korea:
# Korea ๋ฐ์ดํ„ฐ์…‹ ์ค‘์—์„œ์˜ ์ˆœ์œ„ ํ™•์ธ
korea_rank = next((idx for idx, d in enumerate(korea_datasets, 1)
if d.get('id', '').strip() == dataset_id.strip()), None)
if korea_rank:
return min(global_rank or 10001, korea_rank + 1000), True
return global_rank if global_rank else 'Not in top 10000', is_korea
try:
progress(0, desc="Fetching datasets...")
if not HF_TOKEN:
fig = create_error_plot()
error_html = """
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
<h3 style='color: #c00;'>โš ๏ธ API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค</h3>
<p>HuggingFace API ํ† ํฐ์ด ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.</p>
</div>
"""
empty_df = pd.DataFrame(columns=['Global Rank', 'Dataset ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
return fig, error_html, empty_df
# ์ผ๋ฐ˜ ๋ฐ์ดํ„ฐ์…‹๊ณผ Korea ๊ด€๋ จ ๋ฐ์ดํ„ฐ์…‹ ๋ชจ๋‘ ๊ฐ€์ ธ์˜ค๊ธฐ
all_global_datasets = get_all_datasets(limit=10000)
korea_datasets = get_korea_datasets()
print(f"Total global datasets fetched: {len(all_global_datasets)}")
print(f"Total Korea datasets fetched: {len(korea_datasets)}")
filtered_datasets = []
for dataset_id in target_datasets.keys():
try:
normalized_id = dataset_id.strip('/')
dataset_url_api = f"https://huggingface.co/api/datasets/{normalized_id}"
response = requests.get(
dataset_url_api,
headers={'Authorization': f'Bearer {HF_TOKEN}'}
)
if response.status_code == 200:
dataset_data = response.json()
rank, is_korea = calculate_rank(dataset_id, all_global_datasets, korea_datasets)
filtered_datasets.append({
'id': dataset_id,
'global_rank': rank,
'downloads': dataset_data.get('downloads', 0),
'likes': dataset_data.get('likes', 0),
'title': dataset_data.get('title', 'No Title'),
'is_korea': is_korea
})
else:
filtered_datasets.append({
'id': dataset_id,
'global_rank': 'Not in top 10000',
'downloads': 0,
'likes': 0,
'title': 'No Title',
'is_korea': False
})
except Exception as e:
print(f"Error processing {dataset_id}: {str(e)}")
continue
filtered_datasets.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
# ์‹œ๊ฐํ™” ๋ฐ์ดํ„ฐ ์ค€๋น„
valid_datasets = [d for d in filtered_datasets if isinstance(d['global_rank'], (int, float))]
fig = go.Figure()
if valid_datasets:
ids = [d['id'] for d in valid_datasets]
ranks = [d['global_rank'] for d in valid_datasets]
fig.add_trace(go.Bar(
x=ids,
y=[3001 - r for r in ranks],
text=[f"Rank: #{r}<br>{'๐Ÿ‡ฐ๐Ÿ‡ท Korea Dataset<br>' if d['is_korea'] else ''}"
f"Downloads: {format(d['downloads'], ',')}<br>"
f"Likes: {format(d['likes'], ',')}"
for r, d in zip(ranks, valid_datasets)],
textposition='auto',
marker_color=['rgba(255,0,0,0.6)' if d['is_korea'] else 'rgba(0,0,255,0.6)'
for d in valid_datasets],
opacity=0.8
))
fig.update_layout(
title="HuggingFace Datasets Global Rankings (Up to #3000)",
xaxis_title="Dataset ID",
yaxis_title="Global Rank",
yaxis=dict(
ticktext=[f"#{i}" for i in range(1, 10001, 100)],
tickvals=[10001 - i for i in range(1, 10001, 100)],
range=[0, 10000]
),
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
# HTML ์นด๋“œ ์ƒ์„ฑ
html_content = """
<div style='padding: 20px; background: #f5f5f5;'>
<h2 style='color: #2c3e50;'>Datasets Rankings (Up to #3000)</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
for dataset in filtered_datasets:
rank_display = f"Global Rank #{dataset['global_rank']}" if isinstance(dataset['global_rank'], (int, float)) else "Not in top 3000"
korea_badge = "๐Ÿ‡ฐ๐Ÿ‡ท Korea Search Result" if dataset['is_korea'] else ""
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
{f"border: 2px solid #e74c3c;" if dataset['is_korea'] else ""}
'>
<h3 style='color: #34495e;'>{rank_display}</h3>
<h4 style='color: #2c3e50;'>{dataset['id']}</h4>
<p style='color: #e74c3c; font-weight: bold;'>{korea_badge}</p>
<p style='color: #7f8c8d;'>โฌ‡๏ธ Downloads: {format(dataset['downloads'], ',')}</p>
<p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {format(dataset['likes'], ',')}</p>
<a href='{target_datasets[dataset['id']]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Dataset ๐Ÿ”—
</a>
</div>
"""
html_content += "</div></div>"
# ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
df = pd.DataFrame([{
'Global Rank': f"#{d['global_rank']}" if isinstance(d['global_rank'], (int, float)) else d['global_rank'],
'Dataset ID': d['id'],
'Title': d['title'],
'Downloads': format(d['downloads'], ','),
'Likes': format(d['likes'], ','),
'Korea Search': '๐Ÿ‡ฐ๐Ÿ‡ท' if d['is_korea'] else '',
'URL': target_datasets[d['id']]
} for d in filtered_datasets])
progress(1.0, desc="Complete!")
return fig, html_content, df
except Exception as e:
print(f"Error in get_datasets_data: {str(e)}")
error_fig = create_error_plot()
error_html = f"""
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
<h3 style='color: #c00;'>โš ๏ธ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค</h3>
<p>{str(e)}</p>
</div>
"""
empty_df = pd.DataFrame(columns=['Global Rank', 'Dataset ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
return error_fig, error_html, empty_df
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐Ÿค— ํ—ˆ๊น…ํŽ˜์ด์Šค 'ํ•œ๊ตญ(์–ธ์–ด) ๋ฆฌ๋”๋ณด๋“œ'
HuggingFace๊ฐ€ ์ œ๊ณตํ•˜๋Š” Spaces, Models, Datasets์˜ ์‹ค์‹œ๊ฐ„ ์ธ๊ธฐ ์ˆœ์œ„๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ 'ํ•œ๊ตญ์•ˆ(๊ธฐ์—…/์–ธ์–ด)'์˜ ๋ฆฌ์ŠคํŠธ(๊ณต๊ฐœ,๊ฒ€์ƒ‰,๋ฆฌ๋”๋ณด๋“œ ๋“ฑ)๋งŒ ๋ถ„์„. (c)'ํ•œ๊ตญ์ธ๊ณต์ง€๋Šฅ์ง„ํฅํ˜‘ํšŒ' / ์š”์ฒญ: arxivgpt@gmail.com
""")
refresh_btn = gr.Button("๐Ÿ”„ ์ƒˆ๋กœ ๊ณ ์นจ", variant="primary")
with gr.Tab("Spaces Trending"):
trending_plot = gr.Plot()
trending_info = gr.HTML()
trending_df = gr.DataFrame()
with gr.Tab("Models Trending"):
models_plot = gr.Plot()
models_info = gr.HTML()
models_df = gr.DataFrame()
with gr.Tab("Datasets Trending"):
datasets_plot = gr.Plot()
datasets_info = gr.HTML()
datasets_df = gr.DataFrame()
def refresh_all_data():
spaces_results = get_spaces_data("trending")
models_results = get_models_data()
datasets_results = get_datasets_data()
return [
*spaces_results,
*models_results,
*datasets_results
]
refresh_btn.click(
refresh_all_data,
outputs=[
trending_plot, trending_info, trending_df,
models_plot, models_info, models_df,
datasets_plot, datasets_info, datasets_df
]
)
# ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ ๋กœ๋“œ
spaces_results = get_spaces_data("trending")
models_results = get_models_data()
datasets_results = get_datasets_data()
trending_plot.value, trending_info.value, trending_df.value = spaces_results
models_plot.value, models_info.value, models_df.value = models_results
datasets_plot.value, datasets_info.value, datasets_df.value = datasets_results
# Gradio ์•ฑ ์‹คํ–‰
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)