omarViga commited on
Commit
a59ff5c
·
verified ·
1 Parent(s): 999f7f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -201
app.py CHANGED
@@ -1,209 +1,122 @@
1
- """ Basic Agent Evaluation Runner"""
2
- import os
3
- import inspect
4
  import gradio as gr
5
- import requests
6
- import pandas as pd
7
- from langchain_core.messages import HumanMessage
8
- from agent import build_graph
9
-
10
-
11
-
12
- # (Keep Constants as is)
13
- # --- Constants ---
14
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
-
16
- # --- Basic Agent Definition ---
17
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
-
19
-
20
- class BasicAgent:
21
- """A langgraph agent."""
22
- def __init__(self):
23
- print("BasicAgent initialized.")
24
- self.graph = build_graph()
25
-
26
- def __call__(self, question: str) -> str:
27
- print(f"Agent received question (first 50 chars): {question[:50]}...")
28
- # Wrap the question in a HumanMessage from langchain_core
29
- messages = [HumanMessage(content=question)]
30
- messages = self.graph.invoke({"messages": messages})
31
- answer = messages['messages'][-1].content
32
- return answer[14:]
33
-
34
-
35
- def run_and_submit_all( profile: gr.OAuthProfile | None):
36
- """
37
- Fetches all questions, runs the BasicAgent on them, submits all answers,
38
- and displays the results.
39
- """
40
- # --- Determine HF Space Runtime URL and Repo URL ---
41
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
-
43
- if profile:
44
- username= f"{profile.username}"
45
- print(f"User logged in: {username}")
46
- else:
47
- print("User not logged in.")
48
- return "Please Login to Hugging Face with the button.", None
49
-
50
- api_url = DEFAULT_API_URL
51
- questions_url = f"{api_url}/questions"
52
- submit_url = f"{api_url}/submit"
53
-
54
- # 1. Instantiate Agent ( modify this part to create your agent)
55
- try:
56
- agent = BasicAgent()
57
- except Exception as e:
58
- print(f"Error instantiating agent: {e}")
59
- return f"Error initializing agent: {e}", None
60
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
- print(agent_code)
63
-
64
- # 2. Fetch Questions
65
- print(f"Fetching questions from: {questions_url}")
66
- try:
67
- response = requests.get(questions_url, timeout=15)
68
- response.raise_for_status()
69
- questions_data = response.json()
70
- if not questions_data:
71
- print("Fetched questions list is empty.")
72
- return "Fetched questions list is empty or invalid format.", None
73
- print(f"Fetched {len(questions_data)} questions.")
74
- except requests.exceptions.RequestException as e:
75
- print(f"Error fetching questions: {e}")
76
- return f"Error fetching questions: {e}", None
77
- except requests.exceptions.JSONDecodeError as e:
78
- print(f"Error decoding JSON response from questions endpoint: {e}")
79
- print(f"Response text: {response.text[:500]}")
80
- return f"Error decoding server response for questions: {e}", None
81
- except Exception as e:
82
- print(f"An unexpected error occurred fetching questions: {e}")
83
- return f"An unexpected error occurred fetching questions: {e}", None
84
-
85
- # 3. Run your Agent
86
- results_log = []
87
- answers_payload = []
88
- print(f"Running agent on {len(questions_data)} questions...")
89
- for item in questions_data:
90
- task_id = item.get("task_id")
91
- question_text = item.get("question")
92
- if not task_id or question_text is None:
93
- print(f"Skipping item with missing task_id or question: {item}")
94
- continue
95
- try:
96
- submitted_answer = agent(question_text)
97
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
- except Exception as e:
100
- print(f"Error running agent on task {task_id}: {e}")
101
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
-
103
- if not answers_payload:
104
- print("Agent did not produce any answers to submit.")
105
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
-
107
- # 4. Prepare Submission
108
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
- print(status_update)
111
-
112
- # 5. Submit
113
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
- try:
115
- response = requests.post(submit_url, json=submission_data, timeout=60)
116
- response.raise_for_status()
117
- result_data = response.json()
118
- final_status = (
119
- f"Submission Successful!\n"
120
- f"User: {result_data.get('username')}\n"
121
- f"Overall Score: {result_data.get('score', 'N/A')}% "
122
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
- f"Message: {result_data.get('message', 'No message received.')}"
124
- )
125
- print("Submission successful.")
126
- results_df = pd.DataFrame(results_log)
127
- return final_status, results_df
128
- except requests.exceptions.HTTPError as e:
129
- error_detail = f"Server responded with status {e.response.status_code}."
130
- try:
131
- error_json = e.response.json()
132
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
- except requests.exceptions.JSONDecodeError:
134
- error_detail += f" Response: {e.response.text[:500]}"
135
- status_message = f"Submission Failed: {error_detail}"
136
- print(status_message)
137
- results_df = pd.DataFrame(results_log)
138
- return status_message, results_df
139
- except requests.exceptions.Timeout:
140
- status_message = "Submission Failed: The request timed out."
141
- print(status_message)
142
- results_df = pd.DataFrame(results_log)
143
- return status_message, results_df
144
- except requests.exceptions.RequestException as e:
145
- status_message = f"Submission Failed: Network error - {e}"
146
- print(status_message)
147
- results_df = pd.DataFrame(results_log)
148
- return status_message, results_df
149
- except Exception as e:
150
- status_message = f"An unexpected error occurred during submission: {e}"
151
- print(status_message)
152
- results_df = pd.DataFrame(results_log)
153
- return status_message, results_df
154
-
155
-
156
- # --- Build Gradio Interface using Blocks ---
157
- with gr.Blocks() as demo:
158
- gr.Markdown("# Basic Agent Evaluation Runner")
159
- gr.Markdown(
160
- """
161
- **Instructions:**
162
-
163
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
164
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
165
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
166
-
167
- ---
168
- **Disclaimers:**
169
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
170
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
171
- """
172
  )
 
 
173
 
174
- gr.LoginButton()
 
 
 
 
 
 
 
 
 
 
 
175
 
176
- run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
 
177
 
178
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
179
- # Removed max_rows=10 from DataFrame constructor
180
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
181
 
182
- run_button.click(
183
- fn=run_and_submit_all,
184
- outputs=[status_output, results_table]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  )
186
 
187
- if __name__ == "__main__":
188
- print("\n" + "-"*30 + " App Starting " + "-"*30)
189
- # Check for SPACE_HOST and SPACE_ID at startup for information
190
- space_host_startup = os.getenv("SPACE_HOST")
191
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
-
193
- if space_host_startup:
194
- print(f"✅ SPACE_HOST found: {space_host_startup}")
195
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
- else:
197
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
-
199
- if space_id_startup: # Print repo URLs if SPACE_ID is found
200
- print(f"✅ SPACE_ID found: {space_id_startup}")
201
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
- else:
204
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
-
206
- print("-"*(60 + len(" App Starting ")) + "\n")
207
-
208
- print("Launching Gradio Interface for Basic Agent Evaluation...")
209
- demo.launch(debug=True, share=False)
 
 
 
 
1
  import gradio as gr
2
+ from datasets import load_dataset, Dataset
3
+ from datetime import datetime
4
+ from datetime import date
5
+ import io
6
+ import os
7
+ from PIL import Image, ImageDraw, ImageFont
8
+ from huggingface_hub import login
9
+
10
+ login(token=os.environ["HUGGINGFACE_TOKEN"])
11
+
12
+ # Constants
13
+ SCORES_DATASET = "agents-course/unit4-students-scores"
14
+ CERTIFICATES_DATASET = "agents-course/course-certificates-of-excellence"
15
+ THRESHOLD_SCORE = 30
16
+
17
+ # Function to check user score
18
+ def check_user_score(username):
19
+ score_data = load_dataset(SCORES_DATASET, split="train", download_mode="force_redownload")
20
+ matches = [row for row in score_data if row["username"] == username]
21
+ return matches[0] if matches else None
22
+
23
+ # Function to check if certificate entry exists
24
+ def has_certificate_entry(username):
25
+ cert_data = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
26
+ print(username)
27
+ return any(row["username"] == username for row in cert_data)
28
+
29
+ # Function to add certificate entry
30
+ def add_certificate_entry(username, name, score):
31
+ # Load current dataset
32
+ ds = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
33
+
34
+ # Remove any existing entry with the same username
35
+ filtered_rows = [row for row in ds if row["username"] != username]
36
+
37
+ # Append the updated/new entry
38
+ new_entry = {
39
+ "username": username,
40
+ "score": score,
41
+ "timestamp": datetime.now().isoformat()
42
+ }
43
+ filtered_rows.append(new_entry)
44
+
45
+ # Rebuild dataset and push
46
+ updated_ds = Dataset.from_list(filtered_rows)
47
+ updated_ds.push_to_hub(CERTIFICATES_DATASET)
48
+
49
+ # Function to generate certificate PDF
50
+ def generate_certificate(name, score):
51
+ """Generate certificate image and PDF."""
52
+ certificate_path = os.path.join(
53
+ os.path.dirname(__file__), "templates", "certificate.png"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  )
55
+ im = Image.open(certificate_path)
56
+ d = ImageDraw.Draw(im)
57
 
58
+ name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
59
+ date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
60
+
61
+ name = name.title()
62
+ d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
63
+
64
+ d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
65
+
66
+ pdf = im.convert("RGB")
67
+ pdf.save("certificate.pdf")
68
+
69
+ return im, "certificate.pdf"
70
 
71
+ # Main function to handle certificate generation
72
+ def handle_certificate(name, profile: gr.OAuthProfile):
73
+ if profile is None:
74
+ return "You must be logged in with your Hugging Face account.", None
75
 
76
+ username = profile.username
77
+ user_score = check_user_score(username)
 
78
 
79
+ if not user_score:
80
+ return "You need to complete Unit 4 first.", None, None
81
+
82
+ score = user_score["score"]
83
+
84
+ if score < THRESHOLD_SCORE:
85
+ return f"Your score is {score}. You need at least {THRESHOLD_SCORE} to pass.", None, None
86
+
87
+ certificate_image, certificate_pdf = generate_certificate(name, score)
88
+ add_certificate_entry(username, name, score)
89
+ return "Congratulations! Here's your certificate:", certificate_image, certificate_pdf
90
+
91
+ # Gradio interface
92
+ with gr.Blocks() as demo:
93
+ gr.Markdown("# 🎓 Agents Course - Get Your Final Certificate")
94
+ gr.Markdown("Welcome! Follow the steps below to receive your official certificate:")
95
+ gr.Markdown("⚠️ **Note**: Due to high demand, you might experience occasional bugs. If something doesn't work, please try again after a moment!")
96
+
97
+ with gr.Group():
98
+ gr.Markdown("## ✅ How it works")
99
+ gr.Markdown("""
100
+ 1. **Sign in** with your Hugging Face account using the button below.
101
+ 2. **Enter your full name** (this will appear on the certificate).
102
+ 3. Click **'Get My Certificate'** to check your score and download your certificate.
103
+ """)
104
+ gr.Markdown("---")
105
+ gr.Markdown("📝 **Note**: You must have completed [Unit 4](https://huggingface.co/learn/agents-course/unit4/introduction) and your Agent must have scored **above 30** to get your certificate.")
106
+
107
+ gr.LoginButton()
108
+ with gr.Row():
109
+ name_input = gr.Text(label="Enter your name (this will appear on the certificate)")
110
+ generate_btn = gr.Button("Get my certificate")
111
+ output_text = gr.Textbox(label="Result")
112
+ cert_image = gr.Image(label="Your Certificate")
113
+ cert_file = gr.File(label="Download Certificate (PDF)", file_types=[".pdf"])
114
+
115
+ generate_btn.click(
116
+ fn=handle_certificate,
117
+ inputs=[name_input],
118
+ outputs=[output_text, cert_image, cert_file]
119
  )
120
 
121
+ demo.launch()
122
+