Spaces:
Configuration error
Configuration error
| import os | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| import sys | |
| sys.path.insert(0, './diffusers/src') | |
| import torch | |
| import torch.nn as nn | |
| #Hack for ZeroGPU | |
| torch.jit.script = lambda f: f | |
| #### | |
| from huggingface_hub import snapshot_download | |
| from diffusers import DPMSolverMultistepScheduler | |
| from diffusers.models import ControlNetModel | |
| from transformers import CLIPVisionModelWithProjection | |
| from pipeline import OmniZeroPipeline | |
| from insightface.app import FaceAnalysis | |
| from controlnet_aux import ZoeDetector | |
| from utils import draw_kps, load_and_resize_image, align_images | |
| import cv2 | |
| import numpy as np | |
| class OmniZeroSingle(): | |
| def __init__(self, | |
| base_model="stabilityai/stable-diffusion-xl-base-1.0", | |
| ): | |
| snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
| self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| self.face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
| dtype = torch.float16 | |
| ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "h94/IP-Adapter", | |
| subfolder="models/image_encoder", | |
| torch_dtype=dtype, | |
| ).to("cuda") | |
| zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
| zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda") | |
| identitiynet_path = "okaris/face-controlnet-xl" | |
| identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda") | |
| self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") | |
| self.pipeline = OmniZeroPipeline.from_pretrained( | |
| base_model, | |
| controlnet=[identitynet, zoedepthnet], | |
| torch_dtype=dtype, | |
| image_encoder=ip_adapter_plus_image_encoder, | |
| ).to("cuda") | |
| config = self.pipeline.scheduler.config | |
| config["timestep_spacing"] = "trailing" | |
| self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
| self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
| def get_largest_face_embedding_and_kps(self, image, target_image=None): | |
| face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
| if len(face_info) == 0: | |
| return None, None | |
| largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0] | |
| face_embedding = torch.tensor(largest_face['embedding']).to("cuda") | |
| if target_image is None: | |
| target_image = image | |
| zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8) | |
| face_kps_image = draw_kps(zeros, largest_face['kps']) | |
| return face_embedding, face_kps_image | |
| def generate(self, | |
| seed=42, | |
| prompt="A person", | |
| negative_prompt="blurry, out of focus", | |
| guidance_scale=3.0, | |
| number_of_images=1, | |
| number_of_steps=10, | |
| base_image=None, | |
| base_image_strength=0.15, | |
| composition_image=None, | |
| composition_image_strength=1.0, | |
| style_image=None, | |
| style_image_strength=1.0, | |
| identity_image=None, | |
| identity_image_strength=1.0, | |
| depth_image=None, | |
| depth_image_strength=0.5, | |
| ): | |
| resolution = 1024 | |
| if base_image is not None: | |
| base_image = load_and_resize_image(base_image, resolution, resolution) | |
| else: | |
| if composition_image is not None: | |
| base_image = load_and_resize_image(composition_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide a base image or a composition image") | |
| if depth_image is None: | |
| depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution) | |
| else: | |
| depth_image = load_and_resize_image(depth_image, resolution, resolution) | |
| base_image, depth_image = align_images(base_image, depth_image) | |
| if composition_image is not None: | |
| composition_image = load_and_resize_image(composition_image, resolution, resolution) | |
| else: | |
| composition_image = base_image | |
| if style_image is not None: | |
| style_image = load_and_resize_image(style_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide a style image") | |
| if identity_image is not None: | |
| identity_image = load_and_resize_image(identity_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide an identity image") | |
| face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image) | |
| if face_embedding_identity_image is None: | |
| raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small") | |
| face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image) | |
| if face_embedding_base_image is not None: | |
| target_kps = face_kps_base_image | |
| self.pipeline.set_ip_adapter_scale([identity_image_strength, | |
| { | |
| "down": { "block_2": [0.0, 0.0] }, | |
| "up": { "block_0": [0.0, style_image_strength, 0.0] } | |
| }, | |
| { | |
| "down": { "block_2": [0.0, composition_image_strength] }, | |
| "up": { "block_0": [0.0, 0.0, 0.0] } | |
| } | |
| ]) | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| images = self.pipeline( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| ip_adapter_image=[face_embedding_identity_image, style_image, composition_image], | |
| image=base_image, | |
| control_image=[target_kps, depth_image], | |
| controlnet_conditioning_scale=[identity_image_strength, depth_image_strength], | |
| identity_control_indices=[(0,0)], | |
| num_inference_steps=number_of_steps, | |
| num_images_per_prompt=number_of_images, | |
| strength=(1-base_image_strength), | |
| generator=generator, | |
| seed=seed, | |
| ).images | |
| return images | |
| class OmniZeroCouple(): | |
| def __init__(self, | |
| base_model="stabilityai/stable-diffusion-xl-base-1.0", | |
| ): | |
| snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
| self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| self.face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
| dtype = torch.float16 | |
| ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "h94/IP-Adapter", | |
| subfolder="models/image_encoder", | |
| torch_dtype=dtype, | |
| ).to("cuda") | |
| zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
| zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda") | |
| identitiynet_path = "okaris/face-controlnet-xl" | |
| identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda") | |
| self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") | |
| self.pipeline = OmniZeroPipeline.from_pretrained( | |
| base_model, | |
| controlnet=[identitynet, zoedepthnet], | |
| torch_dtype=dtype, | |
| image_encoder=ip_adapter_plus_image_encoder, | |
| ).to("cuda") | |
| config = self.pipeline.scheduler.config | |
| config["timestep_spacing"] = "trailing" | |
| self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
| self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
| def generate(self, | |
| seed=42, | |
| prompt="A person", | |
| negative_prompt="blurry, out of focus", | |
| guidance_scale=3.0, | |
| number_of_images=1, | |
| number_of_steps=10, | |
| base_image=None, | |
| base_image_strength=0.15, | |
| composition_image=None, | |
| composition_image_strength=1.0, | |
| style_image=None, | |
| style_image_strength=1.0, | |
| style_image_2=None, | |
| style_image_strength_2=1.0, | |
| identity_image=None, | |
| identity_image_strength=1.0, | |
| identity_image_2=None, | |
| identity_image_strength_2=1.0, | |
| depth_image=None, | |
| depth_image_strength=0.5, | |
| ): | |
| #Not implemented yet | |
| print("Not implemented yet") |