import gradio as gr import numpy as np import torch from PIL import Image import matplotlib.pyplot as plt from transformers import pipeline from typing import List, Dict, Union import warnings from io import BytesIO import importlib.util import os import openai # Suppress warnings warnings.filterwarnings("ignore") # Set up OpenAI API key api_key = os.getenv('OPENAI_API_KEY') if not api_key: print("No OpenAI API key found - will use simple keyword extraction") elif not api_key.startswith("sk-proj-") and not api_key.startswith("sk-"): print("API key found but doesn't look correct") elif api_key.strip() != api_key: print("API key has leading or trailing whitespace - please fix it.") else: print("OpenAI API key found and looks good!") openai.api_key = api_key # Global variables for models detector = None sam_predictor = None def load_detector(): """Load the OWL-ViT detector once and cache it.""" global detector if detector is None: print("Loading OWL-ViT model...") detector = pipeline( model="google/owlv2-base-patch16-ensemble", task="zero-shot-object-detection", device=0 if torch.cuda.is_available() else -1 ) print("OWL-ViT model loaded successfully!") def install_sam2_if_needed(): """Check if SAM2 is installed, and install it if needed.""" if importlib.util.find_spec("sam2") is not None: print("SAM2 is already installed.") return True try: import subprocess import sys print("Installing SAM2 from GitHub...") subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/sam2.git"]) print("SAM2 installed successfully.") return True except Exception as e: print(f"Error installing SAM2: {e}") return False def load_sam_predictor(): """Load SAM2 predictor if available.""" global sam_predictor if sam_predictor is None: if install_sam2_if_needed(): try: from sam2.sam2_image_predictor import SAM2ImagePredictor print("Loading SAM2 model...") sam_predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") device = "cuda" if torch.cuda.is_available() else "cpu" sam_predictor.model.to(device) print(f"SAM2 model loaded successfully on {device}!") return True except Exception as e: print(f"Error loading SAM2: {e}") return False return sam_predictor is not None def calculate_bbox_area(bbox: List[float]) -> float: """Calculate the area of a bounding box [x1, y1, x2, y2]""" width = abs(bbox[2] - bbox[0]) height = abs(bbox[3] - bbox[1]) return width * height def filter_bbox_outliers(detections: List[Dict], method: str = 'iqr', threshold: float = 1.5, min_score: float = 0.0) -> List[Dict]: """ Filter out outlier bounding boxes based on their area. Args: detections: List of detection dictionaries with 'bbox', 'label', 'score' method: 'iqr' (Interquartile Range) or 'zscore' (Z-score) or 'percentile' threshold: Multiplier for IQR method or Z-score threshold min_score: Minimum confidence score to keep detection Returns: Filtered list of detections """ if not detections: return detections # Filter by minimum score first detections = [det for det in detections if det['score'] >= min_score] # Calculate areas for all bounding boxes areas = [calculate_bbox_area(det['bbox']) for det in detections] areas = np.array(areas) if method == 'iqr': # IQR method q1 = np.percentile(areas, 25) q3 = np.percentile(areas, 75) iqr = q3 - q1 # Define outlier boundaries lower_bound = q1 - threshold * iqr upper_bound = q3 + threshold * iqr # Find valid indices (non-outliers) valid_indices = np.where((areas >= lower_bound) & (areas <= upper_bound))[0] elif method == 'zscore': # Z-score method mean_area = np.mean(areas) std_area = np.std(areas) z_scores = np.abs((areas - mean_area) / std_area) valid_indices = np.where(z_scores <= threshold)[0] else: raise ValueError("Method must be 'iqr' or 'zscore'") # Return filtered detections filtered_detections = [detections[i] for i in valid_indices] print(f"Original detections: {len(detections)}") print(f"Filtered detections: {len(filtered_detections)}") print(f"Removed {len(detections) - len(filtered_detections)} outliers") return filtered_detections def detect_objects_owlv2(text_query, image, threshold=0.1): """Detect objects using OWL-ViT.""" try: load_detector() if isinstance(image, np.ndarray): image = Image.fromarray(image) # Clean up the text query query_terms = [term.strip() for term in text_query.split(',') if term.strip()] if not query_terms: query_terms = ["object"] print(f"Detecting: {query_terms}") predictions = detector(image, candidate_labels=query_terms) detections = [] for pred in predictions: if pred['score'] >= threshold: bbox = pred['box'] width, height = image.size normalized_bbox = [ bbox['xmin'] / width, bbox['ymin'] / height, bbox['xmax'] / width, bbox['ymax'] / height ] detection = { 'label': pred['label'], 'bbox': normalized_bbox, 'score': pred['score'] } detections.append(detection) print(detections) return filter_bbox_outliers(detections,method = 'zscore'),image except Exception as e: print(f"Detection error: {e}") return [], image def generate_masks_sam2(detections, image): """Generate segmentation masks using SAM2.""" try: if not load_sam_predictor(): print("SAM2 not available, skipping mask generation") return detections if isinstance(image, np.ndarray): image = Image.fromarray(image) image_np = np.array(image.convert("RGB")) H, W = image_np.shape[:2] # Set image for SAM2 sam_predictor.set_image(image_np) # Convert normalized bboxes to pixel coordinates input_boxes = [] for det in detections: x1, y1, x2, y2 = det['bbox'] input_boxes.append([int(x1 * W), int(y1 * H), int(x2 * W), int(y2 * H)]) if not input_boxes: return detections input_boxes = np.array(input_boxes) print(f"Generating masks for {len(input_boxes)} detections...") with torch.inference_mode(): device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cuda": with torch.autocast("cuda", dtype=torch.bfloat16): masks, scores, _ = sam_predictor.predict( point_coords=None, point_labels=None, box=input_boxes, multimask_output=False ) else: masks, scores, _ = sam_predictor.predict( point_coords=None, point_labels=None, box=input_boxes, multimask_output=False ) # Add masks to detections results = [] for i, det in enumerate(detections): new_det = det.copy() mask = masks[i] if mask.ndim == 3: mask = mask[0] # Remove batch dimension if present new_det['mask'] = mask.astype(np.uint8) results.append(new_det) print(f"Successfully generated {len(results)} masks") return results except Exception as e: print(f"SAM2 mask generation error: {e}") return detections def visualize_detections_with_masks(image, detections_with_masks, show_labels=False, show_boxes=True): """ Visualize the detections with their segmentation masks. Returns PIL Image instead of showing plot. """ # Load the image if isinstance(image, np.ndarray): image = Image.fromarray(image) image_np = np.array(image.convert("RGB")) # Get image dimensions height, width = image_np.shape[:2] # Create figure fig = plt.figure(figsize=(12, 8)) plt.imshow(image_np) # Define colors for different instances colors = plt.cm.tab10(np.linspace(0, 1, 10)) # Plot each detection for i, detection in enumerate(detections_with_masks): # Get bbox, mask, label, and score bbox = detection['bbox'] label = detection['label'] score = detection['score'] # Convert normalized bbox to pixel coordinates x1, y1, x2, y2 = bbox x1_px, y1_px = int(x1 * width), int(y1 * height) x2_px, y2_px = int(x2 * width), int(y2 * height) # Color for this instance color = colors[i % len(colors)] # Display mask with transparency if available if 'mask' in detection: mask = detection['mask'] mask_color = np.zeros((height, width, 4), dtype=np.float32) mask_color[mask > 0] = [color[0], color[1], color[2], 0.5] plt.imshow(mask_color) # Draw bounding box if requested if show_boxes: rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px, fill=False, edgecolor=color, linewidth=2) plt.gca().add_patch(rect) # Add label and score if requested if show_labels: plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}", color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10) plt.axis('off') plt.tight_layout() # Convert to PIL Image using the correct method buf = BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', dpi=150) plt.close(fig) buf.seek(0) result_image = Image.open(buf) return result_image def visualize_detections(image, detections, show_labels=False): """ Visualize object detections with bounding boxes only. Returns PIL Image instead of showing plot. """ # Load the image if isinstance(image, np.ndarray): image = Image.fromarray(image) image_np = np.array(image.convert("RGB")) # Get image dimensions height, width = image_np.shape[:2] # Create figure fig = plt.figure(figsize=(12, 8)) plt.imshow(image_np) # If we have detections, draw them if detections: # Define colors for different instances colors = plt.cm.tab10(np.linspace(0, 1, 10)) # Plot each detection for i, detection in enumerate(detections): # Get bbox, label, and score bbox = detection['bbox'] label = detection['label'] score = detection['score'] # Convert normalized bbox to pixel coordinates x1, y1, x2, y2 = bbox x1_px, y1_px = int(x1 * width), int(y1 * height) x2_px, y2_px = int(x2 * width), int(y2 * height) # Color for this instance color = colors[i % len(colors)] # Draw bounding box rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px, fill=False, edgecolor=color, linewidth=2) plt.gca().add_patch(rect) # Add label and score if requested if show_labels: plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}", color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10) # Set title plt.title(f'Object Detection Results ({len(detections)} objects found)', fontsize=14, pad=20) plt.axis('off') plt.tight_layout() # Convert to PIL Image buf = BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', dpi=150) plt.close(fig) buf.seek(0) result_image = Image.open(buf) return result_image def get_optimized_prompt(query_text): """ Use OpenAI to convert natural language query into optimal detection prompt. Falls back to simple extraction if OpenAI is not available. """ if not query_text.strip(): return "object" # Try OpenAI first if API key is available if hasattr(openai, 'api_key') and openai.api_key: try: response = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[{ "role": "system", "content": """You are an expert at converting natural language queries into precise object detection terms. RULES: 1. Return ONLY 1-2 words maximum that describe the object to detect 2. Use the exact object name from the user's query 3. For people: use "person" 4. For vehicles: use "car", "truck", "bicycle" 5. Do NOT include counting words, articles, or explanations 6. Examples: - "How many cacao fruits are there?" → "cacao fruit" - "Count the corn in the field" → "corn" - "Find all people" → "person" - "How many cacao pods?" → "cacao pod" - "Detect cars" → "car" - "Count bananas" → "banana" - "How many apples?" → "apple" Return ONLY the object name, nothing else.""" }, { "role": "user", "content": query_text }], temperature=0.0, # Make it deterministic max_tokens=5 # Force brevity ) llm_result = response.choices[0].message.content.strip().lower() # Extra safety: take only first 2 words words = llm_result.split()[:2] final_result = " ".join(words) print(f"🤖 OpenAI suggested prompt: '{final_result}'") return final_result except Exception as e: print(f"OpenAI error: {e}, falling back to keyword extraction") # Fallback to simple keyword extraction (no hardcoded fruits) print("🔤 Using keyword extraction (no OpenAI)") query_lower = query_text.lower().replace("?", "").strip() # Look for common patterns and extract object names if "how many" in query_lower: parts = query_lower.split("how many") if len(parts) > 1: remaining = parts[1].strip() remaining = remaining.replace("are", "").replace("in", "").replace("the", "").replace("image", "").replace("there", "").strip() # Take first meaningful word(s) words = remaining.split()[:2] search_terms = " ".join(words) if words else "object" else: search_terms = "object" elif "count" in query_lower: parts = query_lower.split("count") if len(parts) > 1: remaining = parts[1].strip() remaining = remaining.replace("the", "").replace("in", "").replace("image", "").strip() words = remaining.split()[:2] search_terms = " ".join(words) if words else "object" else: search_terms = "object" elif "find" in query_lower: parts = query_lower.split("find") if len(parts) > 1: remaining = parts[1].strip() remaining = remaining.replace("all", "").replace("the", "").replace("in", "").replace("image", "").strip() words = remaining.split()[:2] search_terms = " ".join(words) if words else "object" else: search_terms = "object" else: # Extract first 1-2 meaningful words from the query words = query_lower.split() meaningful_words = [w for w in words if w not in ["how", "many", "are", "in", "the", "image", "find", "count", "detect", "there", "this", "that", "a", "an"]] search_terms = " ".join(meaningful_words[:2]) if meaningful_words else "object" return search_terms def is_count_query(text): """Check if the query is asking for counting.""" count_keywords = ["how many", "count", "number of", "total"] return any(keyword in text.lower() for keyword in count_keywords) def detection_pipeline(query_text, image, threshold, use_sam): """Main detection pipeline.""" if image is None: return None, "⚠️ Please upload an image first!" try: # Use OpenAI or fallback to get optimized search terms search_terms = get_optimized_prompt(query_text) print(f"Processing query: '{query_text}' -> searching for: '{search_terms}'") # Run object detection detections, processed_image = detect_objects_owlv2(search_terms, image, threshold) print(f"Found {len(detections)} detections") for i, det in enumerate(detections): print(f"Detection {i+1}: {det['label']} (score: {det['score']:.3f})") # Generate masks if requested if use_sam and detections: print("Generating SAM2 masks...") detections = generate_masks_sam2(detections, processed_image) # Create visualization using your proven functions print("Creating visualization...") if use_sam and detections and 'mask' in detections[0]: result_image = visualize_detections_with_masks( processed_image, detections, show_labels=True, show_boxes=True ) print("Created visualization with masks") else: result_image = visualize_detections( processed_image, detections, show_labels=False ) print("Created visualization with bounding boxes only") # Make sure we have a valid result image if result_image is None: print("Warning: result_image is None, returning original image") result_image = processed_image # Generate summary count = len(detections) summary_parts = [] summary_parts.append(f"🗣️ **Original Query**: '{query_text}'") summary_parts.append(f"🤖 **AI-Optimized Search**: '{search_terms}'") summary_parts.append(f"⚙️ **Threshold**: {threshold}") summary_parts.append(f"🎭 **SAM2 Segmentation**: {'Enabled' if use_sam else 'Disabled'}") if count > 0: if is_count_query(query_text): summary_parts.append(f"🔢 **Answer: {count} {search_terms}(s) found**") else: summary_parts.append(f"✅ **Found {count} {search_terms}(s)**") # Show detection details for i, det in enumerate(detections[:5]): # Show first 5 summary_parts.append(f" • Detection {i+1}: {det['score']:.3f} confidence") if count > 5: summary_parts.append(f" • ... and {count-5} more detections") else: summary_parts.append(f"❌ **No {search_terms}(s) detected**") summary_parts.append("💡 Try lowering the threshold or using different terms") summary_text = "\n".join(summary_parts) return result_image, summary_text except Exception as e: error_msg = f"❌ **Error**: {str(e)}" return image, error_msg # ---------------- # GRADIO INTERFACE # ---------------- with gr.Blocks(title="🔍 Object Detection & Segmentation") as demo: gr.Markdown(""" # 🔍 Object Detection & Segmentation App **Simple and powerful object detection using OWL-ViT + SAM2** 1. **Enter your query** (e.g., "How many people?", "Find cars", "Count apples") 2. **Upload an image** 3. **Adjust detection sensitivity** 4. **Toggle SAM2 segmentation** for precise masks 5. **Click Detect!** """) with gr.Row(): with gr.Column(scale=1): query_input = gr.Textbox( label="🗣️ What do you want to detect?", placeholder="e.g., 'How many people are in the image?'", value="How many people are in the image?", lines=2 ) image_input = gr.Image( label="📸 Upload your image", type="numpy" ) with gr.Row(): threshold_slider = gr.Slider( minimum=0.01, maximum=0.9, value=0.1, step=0.01, label="🎚️ Detection Sensitivity" ) sam_checkbox = gr.Checkbox( label="🎭 Enable SAM2 Segmentation", value=False, info="Generate precise pixel masks" ) detect_button = gr.Button("🔍 Detect Objects!", variant="primary", size="lg") with gr.Column(scale=1): output_image = gr.Image(label="🎯 Detection Results") output_text = gr.Textbox( label="📊 Detection Summary", lines=12, show_copy_button=True ) # Event handlers detect_button.click( fn=detection_pipeline, inputs=[query_input, image_input, threshold_slider, sam_checkbox], outputs=[output_image, output_text] ) # Also trigger on Enter in text box query_input.submit( fn=detection_pipeline, inputs=[query_input, image_input, threshold_slider, sam_checkbox], outputs=[output_image, output_text] ) # Examples section gr.Examples( examples=[ ["How many people are in the image?", None, 0.1, False], ["Find all cars", None, 0.15, True], ["Count the bottles", None, 0.1, True], ["Detect dogs", None, 0.2, False], ["How many phones?", None, 0.15, True], ], inputs=[query_input, image_input, threshold_slider, sam_checkbox], ) # Launch if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)