Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ APP_TITLE = "π Asisten Kesehatan Feminacare"
|
|
18 |
INITIAL_MESSAGE = """Halo! π Saya adalah asisten kesehatan feminacare yang siap membantu Anda dengan informasi seputar kesehatan wanita.
|
19 |
Silakan ajukan pertanyaan apa saja dan saya akan membantu Anda dengan informasi yang akurat."""
|
20 |
|
21 |
-
MODEL_NAME = "SeaLLMs/
|
22 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
23 |
TOP_K_DOCS = 5
|
24 |
|
@@ -34,34 +34,43 @@ def initialize_models():
|
|
34 |
|
35 |
def create_llm():
|
36 |
"""Initialize the language model with auto device mapping"""
|
37 |
-
model = AutoModelForCausalLM.from_pretrained(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
|
44 |
-
# Get terminators for the model
|
45 |
-
terminators = [tokenizer.eos_token_id]
|
46 |
-
if hasattr(tokenizer, 'convert_tokens_to_ids'):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
text_generation_pipeline = pipeline(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
)
|
63 |
|
64 |
-
return HuggingFacePipeline(pipeline=text_generation_pipeline)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
PROMPT_TEMPLATE = """
|
67 |
Anda adalah asisten kesehatan profesional dengan nama Feminacare.
|
|
|
18 |
INITIAL_MESSAGE = """Halo! π Saya adalah asisten kesehatan feminacare yang siap membantu Anda dengan informasi seputar kesehatan wanita.
|
19 |
Silakan ajukan pertanyaan apa saja dan saya akan membantu Anda dengan informasi yang akurat."""
|
20 |
|
21 |
+
MODEL_NAME = "SeaLLMs/SeaLLM-13B-Chat"
|
22 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
23 |
TOP_K_DOCS = 5
|
24 |
|
|
|
34 |
|
35 |
def create_llm():
|
36 |
"""Initialize the language model with auto device mapping"""
|
37 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
# MODEL_NAME,
|
39 |
+
# device_map="auto",
|
40 |
+
# trust_remote_code=True
|
41 |
+
# )
|
42 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
|
44 |
+
# # Get terminators for the model
|
45 |
+
# terminators = [tokenizer.eos_token_id]
|
46 |
+
# if hasattr(tokenizer, 'convert_tokens_to_ids'):
|
47 |
+
# try:
|
48 |
+
# terminators.append(tokenizer.convert_tokens_to_ids("<|eot_id|>"))
|
49 |
+
# except:
|
50 |
+
# pass
|
51 |
|
52 |
+
# text_generation_pipeline = pipeline(
|
53 |
+
# model=model,
|
54 |
+
# tokenizer=tokenizer,
|
55 |
+
# task="text-generation",
|
56 |
+
# temperature=0.2,
|
57 |
+
# do_sample=True,
|
58 |
+
# repetition_penalty=1.1,
|
59 |
+
# return_full_text=False,
|
60 |
+
# max_new_tokens=200,
|
61 |
+
# eos_token_id=terminators,
|
62 |
+
# )
|
63 |
|
64 |
+
# return HuggingFacePipeline(pipeline=text_generation_pipeline)
|
65 |
+
return HuggingFaceHub(
|
66 |
+
repo_id=MODEL_NAME,
|
67 |
+
model_kwargs={
|
68 |
+
"temperature": 0.7, # Balanced between creativity and accuracy
|
69 |
+
"max_new_tokens": 1024,
|
70 |
+
"top_p": 0.9,
|
71 |
+
"frequency_penalty": 0.5
|
72 |
+
}
|
73 |
+
)
|
74 |
|
75 |
PROMPT_TEMPLATE = """
|
76 |
Anda adalah asisten kesehatan profesional dengan nama Feminacare.
|