Spaces:
Sleeping
Sleeping
Nathan Slaughter
commited on
Commit
·
82915e5
1
Parent(s):
8428312
move parse message
Browse files- app/models.py +25 -1
- app/pipeline.py +12 -35
- app/processing.py +5 -7
- tests/test_pipeline.py +2 -18
app/models.py
CHANGED
@@ -13,7 +13,7 @@ class Message(BaseModel):
|
|
13 |
content: list[Card]
|
14 |
|
15 |
@validator('content', pre=True)
|
16 |
-
def parse_content(cls, v):
|
17 |
if isinstance(v, str):
|
18 |
try:
|
19 |
content_list = json.loads(v)
|
@@ -44,3 +44,27 @@ class PydanticEncoder(json.JSONEncoder):
|
|
44 |
if isinstance(obj, BaseModel):
|
45 |
return obj.dict()
|
46 |
return super().default(obj)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
content: list[Card]
|
14 |
|
15 |
@validator('content', pre=True)
|
16 |
+
def parse_content(cls, v: str) -> 'Message':
|
17 |
if isinstance(v, str):
|
18 |
try:
|
19 |
content_list = json.loads(v)
|
|
|
44 |
if isinstance(obj, BaseModel):
|
45 |
return obj.dict()
|
46 |
return super().default(obj)
|
47 |
+
|
48 |
+
def parse_message(input_dict: dict[str, any]) -> Message:
|
49 |
+
try:
|
50 |
+
# Extract the role
|
51 |
+
role: str = input_dict['role']
|
52 |
+
|
53 |
+
# Parse the content
|
54 |
+
content: str = input_dict['content']
|
55 |
+
|
56 |
+
# If content is a string, try to parse it as JSON
|
57 |
+
if isinstance(content, str):
|
58 |
+
content = json.loads(content)
|
59 |
+
|
60 |
+
# Create Card objects from the content
|
61 |
+
cards = [Card(**item) for item in content]
|
62 |
+
|
63 |
+
# Create and return the Message object
|
64 |
+
return Message(role=role, content=cards)
|
65 |
+
except json.JSONDecodeError as e:
|
66 |
+
raise ValueError(f"Invalid JSON in content: {str(e)}")
|
67 |
+
except ValidationError as e:
|
68 |
+
raise ValueError(f"Validation error: {str(e)}")
|
69 |
+
except KeyError as e:
|
70 |
+
raise ValueError(f"Missing required key: {str(e)}")
|
app/pipeline.py
CHANGED
@@ -5,7 +5,7 @@ import logging
|
|
5 |
import torch
|
6 |
from transformers import pipeline
|
7 |
|
8 |
-
from .
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
logging.basicConfig(filename="pipeline.log", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
|
@@ -21,7 +21,7 @@ class Pipeline:
|
|
21 |
self.device = self._determine_device()
|
22 |
logger.info(f"device type: {self.device}")
|
23 |
self.messages = [
|
24 |
-
{"role": "system", "content": """You are an expert flashcard creator.
|
25 |
- You ALWAYS include a single knowledge item per flashcard.
|
26 |
- You ALWAYS respond in valid JSON format.
|
27 |
|
@@ -38,47 +38,24 @@ class Pipeline:
|
|
38 |
def extract_flashcards(self, content: str = "", max_new_tokens: int = 1024) -> str:
|
39 |
user_prompt = {"role": "user", "content": content}
|
40 |
self.messages.append(user_prompt)
|
41 |
-
|
42 |
-
self.
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def generate_flashcards(self, output_format: str, content: str) -> str:
|
48 |
response = self.extract_flashcards(content)
|
49 |
return format_flashcards(output_format, response)
|
50 |
|
51 |
-
def _determine_device(self):
|
52 |
if torch.cuda.is_available():
|
53 |
return torch.device("cuda")
|
54 |
elif torch.backends.mps.is_available():
|
55 |
return torch.device("mps")
|
56 |
else:
|
57 |
return torch.device("cpu")
|
58 |
-
|
59 |
-
def parse_message(input_dict: dict[str, any]) -> Message:
|
60 |
-
try:
|
61 |
-
# Extract the role
|
62 |
-
role: str = input_dict['role']
|
63 |
-
|
64 |
-
# Parse the content
|
65 |
-
content: str = input_dict['content']
|
66 |
-
|
67 |
-
# If content is a string, try to parse it as JSON
|
68 |
-
if isinstance(content, str):
|
69 |
-
content = json.loads(content)
|
70 |
-
|
71 |
-
# Create Card objects from the content
|
72 |
-
cards = [Card(**item) for item in content]
|
73 |
-
|
74 |
-
# Create and return the Message object
|
75 |
-
return Message(role=role, content=cards)
|
76 |
-
except json.JSONDecodeError as e:
|
77 |
-
logger.error(f"Invalid JSON in content: {str(e)}")
|
78 |
-
raise ValueError(f"Invalid JSON in content: {str(e)}")
|
79 |
-
except ValidationError as e:
|
80 |
-
logger.error(f"Validation error: {str(e)}")
|
81 |
-
raise ValueError(f"Validation error: {str(e)}")
|
82 |
-
except KeyError as e:
|
83 |
-
logger.error(f"Missing required key: {str(e)}")
|
84 |
-
raise ValueError(f"Missing required key: {str(e)}")
|
|
|
5 |
import torch
|
6 |
from transformers import pipeline
|
7 |
|
8 |
+
from .processing import format_flashcards
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
logging.basicConfig(filename="pipeline.log", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
|
|
|
21 |
self.device = self._determine_device()
|
22 |
logger.info(f"device type: {self.device}")
|
23 |
self.messages = [
|
24 |
+
{"role": "system", "content": """You are an expert flashcard creator.
|
25 |
- You ALWAYS include a single knowledge item per flashcard.
|
26 |
- You ALWAYS respond in valid JSON format.
|
27 |
|
|
|
38 |
def extract_flashcards(self, content: str = "", max_new_tokens: int = 1024) -> str:
|
39 |
user_prompt = {"role": "user", "content": content}
|
40 |
self.messages.append(user_prompt)
|
41 |
+
try:
|
42 |
+
response_message = self.torch_pipe(
|
43 |
+
self.messages,
|
44 |
+
max_new_tokens=max_new_tokens
|
45 |
+
)[0]["generated_text"][-1]
|
46 |
+
return response_message
|
47 |
+
except Exception as e:
|
48 |
+
logger.error(f"Error extracting flashcards: {str(e)}")
|
49 |
+
raise ValueError(f"Error extraction flashcards: {str(e)}")
|
50 |
|
51 |
def generate_flashcards(self, output_format: str, content: str) -> str:
|
52 |
response = self.extract_flashcards(content)
|
53 |
return format_flashcards(output_format, response)
|
54 |
|
55 |
+
def _determine_device(self) -> torch.device:
|
56 |
if torch.cuda.is_available():
|
57 |
return torch.device("cuda")
|
58 |
elif torch.backends.mps.is_available():
|
59 |
return torch.device("mps")
|
60 |
else:
|
61 |
return torch.device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/processing.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
2 |
import pymupdf4llm
|
3 |
|
|
|
|
|
4 |
def process_pdf(pdf_path: str) -> str:
|
5 |
"""
|
6 |
Extracts text from a PDF file using pymupdf4llm.
|
@@ -28,14 +30,12 @@ def process_file(file_obj, output_format: str, pipeline) -> str:
|
|
28 |
"""
|
29 |
file_path = file_obj.name
|
30 |
file_ext = os.path.splitext(file_path)[1].lower()
|
31 |
-
|
32 |
if file_ext == '.pdf':
|
33 |
text = process_pdf(file_path)
|
34 |
elif file_ext in ['.txt', '.md']:
|
35 |
text = read_text_file(file_path)
|
36 |
else:
|
37 |
raise ValueError("Unsupported file type.")
|
38 |
-
|
39 |
flashcards = pipeline.generate_flashcards(output_format, text)
|
40 |
return flashcards
|
41 |
|
@@ -49,16 +49,14 @@ def process_text_input(output_format: str, input_text: str) -> str:
|
|
49 |
flashcards = pipeline.generate_flashcards(output_format, input_text)
|
50 |
return flashcards
|
51 |
|
52 |
-
|
53 |
-
def format_flashcards(self, output_format: str, response: str) -> str:
|
54 |
output = ""
|
55 |
try :
|
56 |
message = parse_message(response)
|
57 |
-
|
58 |
-
except ValidationError as e:
|
59 |
raise e
|
60 |
if output_format.lower() == "json":
|
61 |
-
output = message.content_to_json()
|
62 |
elif output_format.lower() == "csv":
|
63 |
output = message.content_to_csv()
|
64 |
return output
|
|
|
1 |
import os
|
2 |
import pymupdf4llm
|
3 |
|
4 |
+
from .models import parse_message
|
5 |
+
|
6 |
def process_pdf(pdf_path: str) -> str:
|
7 |
"""
|
8 |
Extracts text from a PDF file using pymupdf4llm.
|
|
|
30 |
"""
|
31 |
file_path = file_obj.name
|
32 |
file_ext = os.path.splitext(file_path)[1].lower()
|
|
|
33 |
if file_ext == '.pdf':
|
34 |
text = process_pdf(file_path)
|
35 |
elif file_ext in ['.txt', '.md']:
|
36 |
text = read_text_file(file_path)
|
37 |
else:
|
38 |
raise ValueError("Unsupported file type.")
|
|
|
39 |
flashcards = pipeline.generate_flashcards(output_format, text)
|
40 |
return flashcards
|
41 |
|
|
|
49 |
flashcards = pipeline.generate_flashcards(output_format, input_text)
|
50 |
return flashcards
|
51 |
|
52 |
+
def format_flashcards(output_format: str, response: str) -> str:
|
|
|
53 |
output = ""
|
54 |
try :
|
55 |
message = parse_message(response)
|
56 |
+
except Exception as e:
|
|
|
57 |
raise e
|
58 |
if output_format.lower() == "json":
|
59 |
+
output:str = message.content_to_json()
|
60 |
elif output_format.lower() == "csv":
|
61 |
output = message.content_to_csv()
|
62 |
return output
|
tests/test_pipeline.py
CHANGED
@@ -3,8 +3,8 @@ from unittest.mock import Mock, patch
|
|
3 |
import json
|
4 |
from io import StringIO
|
5 |
from pydantic import ValidationError
|
6 |
-
from app.pipeline import Pipeline
|
7 |
-
from app.models import PydanticEncoder
|
8 |
|
9 |
# Tests for Pipeline class
|
10 |
@pytest.fixture
|
@@ -13,22 +13,6 @@ def mock_pipeline():
|
|
13 |
mock_pipe.return_value = Mock()
|
14 |
yield Pipeline("mock_model")
|
15 |
|
16 |
-
# def test_extract_flashcards(mock_pipeline):
|
17 |
-
# mock_pipeline.torch_pipe.return_value = [{"generated_text": [{"role": "assistant", "content": '[{"question": "Q", "answer": "A"}]'}]}]
|
18 |
-
# response = mock_pipeline.extract_flashcards("Test content")
|
19 |
-
# assert isinstance(response, dict)
|
20 |
-
# assert "content" in response
|
21 |
-
|
22 |
-
# def test_format_flashcards_csv(mock_pipeline):
|
23 |
-
# response = {"role": "assistant", "content": '[{"question": "Q", "answer": "A"}]'}
|
24 |
-
# formatted = mock_pipeline.format_flashcards("csv", response)
|
25 |
-
# assert formatted.strip() == "Question,Answer\nQ,A"
|
26 |
-
|
27 |
-
# def test_generate_flashcards(mock_pipeline):
|
28 |
-
# mock_pipeline.extract_flashcards.return_value = {"role": "assistant", "content": '[{"question": "Q", "answer": "A"}]'}
|
29 |
-
# result = mock_pipeline.generate_flashcards("json", "Test content")
|
30 |
-
# assert json.loads(result) == [{"question": "Q", "answer": "A"}]
|
31 |
-
|
32 |
# Tests for parse_message function
|
33 |
def test_parse_message_valid_input():
|
34 |
input_dict = {
|
|
|
3 |
import json
|
4 |
from io import StringIO
|
5 |
from pydantic import ValidationError
|
6 |
+
from app.pipeline import Pipeline
|
7 |
+
from app.models import PydanticEncoder, Message, Card, parse_message
|
8 |
|
9 |
# Tests for Pipeline class
|
10 |
@pytest.fixture
|
|
|
13 |
mock_pipe.return_value = Mock()
|
14 |
yield Pipeline("mock_model")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Tests for parse_message function
|
17 |
def test_parse_message_valid_input():
|
18 |
input_dict = {
|