Spaces:
Running
Running
auxiliray scripts for dataset managements
Browse files
scripts/calculate_annotator_audio_minutes.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Script to calculate total minutes of audio data assigned to each annotator.
|
4 |
+
|
5 |
+
This script queries the database to find all audio files assigned to each annotator
|
6 |
+
through AnnotationInterval ranges, loads the actual audio files to calculate their
|
7 |
+
durations, and reports the total minutes per annotator.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import sys
|
12 |
+
import os
|
13 |
+
import time
|
14 |
+
from typing import Dict, List, Tuple
|
15 |
+
from sqlalchemy import and_
|
16 |
+
from sqlalchemy.exc import OperationalError
|
17 |
+
|
18 |
+
# Add project root to Python path
|
19 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
20 |
+
if project_root not in sys.path:
|
21 |
+
sys.path.insert(0, project_root)
|
22 |
+
|
23 |
+
from utils.database import get_db, get_db_readonly
|
24 |
+
from utils.cloud_server_audio_loader import CloudServerAudioLoader
|
25 |
+
from data.models import Annotator, AnnotationInterval, TTSData
|
26 |
+
from utils.logger import Logger
|
27 |
+
from utils.sentry_integration import capture_custom_event
|
28 |
+
import sentry_sdk
|
29 |
+
from config import conf
|
30 |
+
|
31 |
+
log = Logger()
|
32 |
+
|
33 |
+
def get_assigned_tts_data_for_annotator(db, annotator_id: int) -> List[TTSData]:
|
34 |
+
"""
|
35 |
+
Get all TTSData items assigned to a specific annotator through AnnotationInterval ranges.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
db: Database session
|
39 |
+
annotator_id: ID of the annotator
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
List of TTSData objects assigned to the annotator
|
43 |
+
"""
|
44 |
+
max_retries = 3
|
45 |
+
retry_delay = 5 # seconds
|
46 |
+
|
47 |
+
for attempt in range(max_retries):
|
48 |
+
try:
|
49 |
+
# Get all annotation intervals for this annotator
|
50 |
+
intervals = db.query(AnnotationInterval).filter(
|
51 |
+
AnnotationInterval.annotator_id == annotator_id
|
52 |
+
).all()
|
53 |
+
|
54 |
+
if not intervals:
|
55 |
+
return []
|
56 |
+
|
57 |
+
# Collect all TTSData IDs within the assigned ranges
|
58 |
+
assigned_tts_data = []
|
59 |
+
for interval in intervals:
|
60 |
+
if interval.start_index is not None and interval.end_index is not None:
|
61 |
+
tts_data_in_range = db.query(TTSData).filter(
|
62 |
+
and_(
|
63 |
+
TTSData.id >= interval.start_index,
|
64 |
+
TTSData.id <= interval.end_index
|
65 |
+
)
|
66 |
+
).all()
|
67 |
+
assigned_tts_data.extend(tts_data_in_range)
|
68 |
+
|
69 |
+
return assigned_tts_data
|
70 |
+
|
71 |
+
except OperationalError as e:
|
72 |
+
if "Lost connection to MySQL server" in str(e) and attempt < max_retries - 1:
|
73 |
+
log.warning(f"Database connection lost, retrying in {retry_delay} seconds... (attempt {attempt + 1}/{max_retries})")
|
74 |
+
time.sleep(retry_delay)
|
75 |
+
# Refresh the database session
|
76 |
+
db.rollback()
|
77 |
+
continue
|
78 |
+
else:
|
79 |
+
raise
|
80 |
+
|
81 |
+
def calculate_audio_duration_seconds(filename: str, loader: CloudServerAudioLoader) -> float:
|
82 |
+
"""
|
83 |
+
Calculate the duration of an audio file in seconds.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
filename: Name of the audio file
|
87 |
+
loader: CloudServerAudioLoader instance
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
Duration in seconds, or 0.0 if file cannot be loaded
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
sample_rate, samples = loader.load_audio(filename)
|
94 |
+
# Calculate duration in seconds
|
95 |
+
if samples.ndim == 1:
|
96 |
+
# Mono audio
|
97 |
+
duration_seconds = len(samples) / sample_rate
|
98 |
+
else:
|
99 |
+
# Multi-channel audio - use length of first channel
|
100 |
+
duration_seconds = samples.shape[0] / sample_rate
|
101 |
+
|
102 |
+
return duration_seconds
|
103 |
+
except Exception as e:
|
104 |
+
log.warning(f"Failed to load audio file '{filename}': {e}")
|
105 |
+
sentry_sdk.capture_exception(e, extra={
|
106 |
+
'operation': 'calculate_audio_duration',
|
107 |
+
'filename': filename
|
108 |
+
})
|
109 |
+
return 0.0
|
110 |
+
|
111 |
+
def calculate_annotator_audio_minutes(annotator_name: str = None):
|
112 |
+
"""
|
113 |
+
Calculate and report the total minutes of audio assigned to each annotator.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
annotator_name: Optional name of specific annotator to calculate for
|
117 |
+
"""
|
118 |
+
try:
|
119 |
+
# Initialize audio loader
|
120 |
+
loader = CloudServerAudioLoader(conf.FTP_URL)
|
121 |
+
|
122 |
+
# First, get the annotators list with a fresh connection
|
123 |
+
annotator_data = []
|
124 |
+
with get_db_readonly() as db:
|
125 |
+
# Get annotators based on filter
|
126 |
+
if annotator_name:
|
127 |
+
annotators = db.query(Annotator).filter(
|
128 |
+
Annotator.is_active == True,
|
129 |
+
Annotator.name == annotator_name
|
130 |
+
).all()
|
131 |
+
if not annotators:
|
132 |
+
log.error(f"No active annotator found with name: {annotator_name}")
|
133 |
+
return
|
134 |
+
else:
|
135 |
+
annotators = db.query(Annotator).filter(Annotator.is_active == True).all()
|
136 |
+
|
137 |
+
# Extract the data we need before the session closes
|
138 |
+
annotator_data = [(ann.id, ann.name) for ann in annotators]
|
139 |
+
|
140 |
+
if not annotator_data:
|
141 |
+
log.info("No active annotators found.")
|
142 |
+
return
|
143 |
+
|
144 |
+
log.info("--- Annotator Audio Duration Report ---")
|
145 |
+
log.info("Calculating total minutes of assigned audio per annotator...")
|
146 |
+
log.info("")
|
147 |
+
|
148 |
+
total_annotators = len(annotator_data)
|
149 |
+
annotator_results = []
|
150 |
+
|
151 |
+
for idx, (annotator_id, annotator_name) in enumerate(annotator_data, 1):
|
152 |
+
log.info(f"Processing annotator {idx}/{total_annotators}: {annotator_name} (ID: {annotator_id})")
|
153 |
+
|
154 |
+
# Get assigned TTSData for this annotator with a fresh connection
|
155 |
+
assigned_tts_data = []
|
156 |
+
with get_db_readonly() as db:
|
157 |
+
assigned_tts_data = get_assigned_tts_data_for_annotator(db, annotator_id)
|
158 |
+
|
159 |
+
if not assigned_tts_data:
|
160 |
+
log.info(f" No audio files assigned to {annotator_name}")
|
161 |
+
annotator_results.append((annotator_name, 0, 0.0))
|
162 |
+
continue
|
163 |
+
|
164 |
+
total_duration_seconds = 0.0
|
165 |
+
successful_files = 0
|
166 |
+
failed_files = 0
|
167 |
+
|
168 |
+
log.info(f" Calculating duration for {len(assigned_tts_data)} assigned audio files...")
|
169 |
+
|
170 |
+
# Calculate duration for each assigned audio file
|
171 |
+
for tts_data in assigned_tts_data:
|
172 |
+
duration = calculate_audio_duration_seconds(tts_data.filename, loader)
|
173 |
+
if duration > 0:
|
174 |
+
total_duration_seconds += duration
|
175 |
+
successful_files += 1
|
176 |
+
else:
|
177 |
+
failed_files += 1
|
178 |
+
|
179 |
+
total_minutes = total_duration_seconds / 60.0
|
180 |
+
|
181 |
+
log.info(f" Successfully processed: {successful_files} files")
|
182 |
+
if failed_files > 0:
|
183 |
+
log.warning(f" Failed to process: {failed_files} files")
|
184 |
+
log.info(f" Total duration: {total_duration_seconds:.2f} seconds ({total_minutes:.2f} minutes)")
|
185 |
+
|
186 |
+
annotator_results.append((annotator_name, len(assigned_tts_data), total_minutes))
|
187 |
+
log.info("")
|
188 |
+
|
189 |
+
# Print summary report
|
190 |
+
log.info("=" * 60)
|
191 |
+
log.info("SUMMARY REPORT")
|
192 |
+
log.info("=" * 60)
|
193 |
+
log.info(f"{'Annotator':<20} {'Files':<8} {'Minutes':<12} {'Hours':<8}")
|
194 |
+
log.info("-" * 60)
|
195 |
+
|
196 |
+
total_files = 0
|
197 |
+
total_minutes = 0.0
|
198 |
+
|
199 |
+
for annotator_name, file_count, minutes in annotator_results:
|
200 |
+
hours = minutes / 60.0
|
201 |
+
log.info(f"{annotator_name:<20} {file_count:<8} {minutes:<12.2f} {hours:<8.2f}")
|
202 |
+
total_files += file_count
|
203 |
+
total_minutes += minutes
|
204 |
+
|
205 |
+
log.info("-" * 60)
|
206 |
+
total_hours = total_minutes / 60.0
|
207 |
+
log.info(f"{'TOTAL':<20} {total_files:<8} {total_minutes:<12.2f} {total_hours:<8.2f}")
|
208 |
+
log.info("=" * 60)
|
209 |
+
|
210 |
+
# Capture analytics event
|
211 |
+
capture_custom_event(
|
212 |
+
'annotator_audio_calculation_completed',
|
213 |
+
{
|
214 |
+
'total_annotators': total_annotators,
|
215 |
+
'total_files_processed': total_files,
|
216 |
+
'total_minutes': total_minutes,
|
217 |
+
'total_hours': total_hours
|
218 |
+
}
|
219 |
+
)
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
log.error(f"Failed to calculate annotator audio minutes: {e}")
|
223 |
+
sentry_sdk.capture_exception(e, extra={
|
224 |
+
'operation': 'calculate_annotator_audio_minutes'
|
225 |
+
})
|
226 |
+
raise
|
227 |
+
|
228 |
+
def main():
|
229 |
+
"""Main entry point for the script."""
|
230 |
+
parser = argparse.ArgumentParser(
|
231 |
+
description="Calculate total minutes of audio data assigned to each annotator"
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
'--annotator',
|
235 |
+
type=str,
|
236 |
+
help="Calculate for a specific annotator by name (optional, calculates for all if not specified)"
|
237 |
+
)
|
238 |
+
|
239 |
+
args = parser.parse_args()
|
240 |
+
|
241 |
+
if args.annotator:
|
242 |
+
log.info(f"Calculating audio minutes for annotator: {args.annotator}")
|
243 |
+
calculate_annotator_audio_minutes(args.annotator)
|
244 |
+
else:
|
245 |
+
log.info("Calculating audio minutes for all annotators")
|
246 |
+
calculate_annotator_audio_minutes()
|
247 |
+
|
248 |
+
if __name__ == "__main__":
|
249 |
+
main()
|
scripts/export_approved_datasets.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Optimized TTS Data Export to Hugging Face
|
4 |
+
This script exports approved TTS annotations directly from the database to Hugging Face.
|
5 |
+
Features:
|
6 |
+
- Local caching for audio files to avoid re-downloading
|
7 |
+
- Batch processing to handle large datasets without memory issues
|
8 |
+
- Resume capability for interrupted uploads
|
9 |
+
- Better error handling and retry mechanisms
|
10 |
+
- HuggingFace best practices for large dataset uploads
|
11 |
+
"""
|
12 |
+
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
import json
|
16 |
+
import hashlib
|
17 |
+
import time
|
18 |
+
import shutil
|
19 |
+
from pathlib import Path
|
20 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
21 |
+
from typing import List, Dict, Optional, Tuple
|
22 |
+
import pymysql
|
23 |
+
import requests
|
24 |
+
import pandas as pd
|
25 |
+
from huggingface_hub import HfApi, login
|
26 |
+
from datasets import Dataset, Audio, Features, Value
|
27 |
+
import librosa
|
28 |
+
import numpy as np
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
# Configuration
|
32 |
+
TARGET_REPO = "navidved/approved-tts-dataset"
|
33 |
+
SPEAKER_NAME = "ali_bandari"
|
34 |
+
BATCH_SIZE = 100 # Process annotations in batches
|
35 |
+
CACHE_DIR = "./audio_cache" # Local cache directory
|
36 |
+
TEMP_DIR = "./temp_dataset" # Temporary directory for dataset preparation
|
37 |
+
MAX_WORKERS = 4 # Concurrent downloads
|
38 |
+
MAX_RETRIES = 3 # Max retries for failed downloads
|
39 |
+
|
40 |
+
# Memory optimization settings
|
41 |
+
OPTIMIZE_MEMORY = True # Enable memory optimizations
|
42 |
+
TARGET_SAMPLE_RATE = 22050 # Reduce sample rate to save memory (None to keep original)
|
43 |
+
AUDIO_DTYPE = 'int16' # Use int16 instead of float32 to halve memory usage
|
44 |
+
USE_GENERATOR = True # Use generator-based dataset creation (recommended for large datasets)
|
45 |
+
|
46 |
+
# Database configuration (edit these if needed)
|
47 |
+
DB_CONFIG = {
|
48 |
+
'host': 'annotation-db.apps.teh2.abrhapaas.com',
|
49 |
+
'port': 32107,
|
50 |
+
'user': os.getenv('DB_USER', 'navid'),
|
51 |
+
'password': os.getenv('DB_PASSWORD', 'ZUJSK!1V!PF4ZEnIaylX'),
|
52 |
+
'database': os.getenv('DB_NAME', 'tts'),
|
53 |
+
'charset': 'utf8mb4'
|
54 |
+
}
|
55 |
+
|
56 |
+
# Audio server base URL
|
57 |
+
AUDIO_BASE_URL = "http://hubbit.ir/hf_dataset/tts"
|
58 |
+
|
59 |
+
class CacheManager:
|
60 |
+
"""Handles local caching of audio files"""
|
61 |
+
|
62 |
+
def __init__(self, cache_dir: str):
|
63 |
+
self.cache_dir = Path(cache_dir)
|
64 |
+
self.cache_dir.mkdir(exist_ok=True)
|
65 |
+
self.index_file = self.cache_dir / "cache_index.json"
|
66 |
+
self.index = self._load_index()
|
67 |
+
|
68 |
+
def _load_index(self) -> Dict:
|
69 |
+
"""Load cache index from disk"""
|
70 |
+
if self.index_file.exists():
|
71 |
+
try:
|
72 |
+
with open(self.index_file, 'r') as f:
|
73 |
+
return json.load(f)
|
74 |
+
except:
|
75 |
+
return {}
|
76 |
+
return {}
|
77 |
+
|
78 |
+
def _save_index(self):
|
79 |
+
"""Save cache index to disk"""
|
80 |
+
with open(self.index_file, 'w') as f:
|
81 |
+
json.dump(self.index, f)
|
82 |
+
|
83 |
+
def _get_cache_key(self, filename: str) -> str:
|
84 |
+
"""Generate cache key for filename"""
|
85 |
+
return hashlib.md5(filename.encode()).hexdigest()
|
86 |
+
|
87 |
+
def get_cached_file(self, filename: str) -> Optional[Path]:
|
88 |
+
"""Get cached file path if exists and valid"""
|
89 |
+
cache_key = self._get_cache_key(filename)
|
90 |
+
if cache_key in self.index:
|
91 |
+
cached_path = Path(self.index[cache_key])
|
92 |
+
if cached_path.exists():
|
93 |
+
return cached_path
|
94 |
+
else:
|
95 |
+
# Remove invalid entry
|
96 |
+
del self.index[cache_key]
|
97 |
+
self._save_index()
|
98 |
+
return None
|
99 |
+
|
100 |
+
def cache_file(self, filename: str, file_data: bytes) -> Path:
|
101 |
+
"""Cache file data and return path"""
|
102 |
+
cache_key = self._get_cache_key(filename)
|
103 |
+
# Use original extension if available
|
104 |
+
ext = Path(filename).suffix or '.mp3'
|
105 |
+
cached_path = self.cache_dir / f"{cache_key}{ext}"
|
106 |
+
|
107 |
+
with open(cached_path, 'wb') as f:
|
108 |
+
f.write(file_data)
|
109 |
+
|
110 |
+
self.index[cache_key] = str(cached_path)
|
111 |
+
self._save_index()
|
112 |
+
return cached_path
|
113 |
+
|
114 |
+
|
115 |
+
class AudioDownloader:
|
116 |
+
"""Handles audio downloading with retry logic"""
|
117 |
+
|
118 |
+
def __init__(self, base_url: str, cache_manager: CacheManager, max_retries: int = 3):
|
119 |
+
self.base_url = base_url
|
120 |
+
self.cache_manager = cache_manager
|
121 |
+
self.max_retries = max_retries
|
122 |
+
|
123 |
+
def download_audio(self, filename: str) -> Optional[Tuple[Path, Dict]]:
|
124 |
+
"""Download and process audio file, return (path, audio_info)"""
|
125 |
+
# Check cache first
|
126 |
+
cached_path = self.cache_manager.get_cached_file(filename)
|
127 |
+
if cached_path:
|
128 |
+
return self._load_audio_info(cached_path, filename)
|
129 |
+
|
130 |
+
# Download file
|
131 |
+
url = f"{self.base_url}/{filename}"
|
132 |
+
|
133 |
+
for attempt in range(self.max_retries):
|
134 |
+
try:
|
135 |
+
response = requests.get(url, timeout=30)
|
136 |
+
response.raise_for_status()
|
137 |
+
|
138 |
+
# Cache the file
|
139 |
+
cached_path = self.cache_manager.cache_file(filename, response.content)
|
140 |
+
return self._load_audio_info(cached_path, filename)
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
if attempt < self.max_retries - 1:
|
144 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
145 |
+
continue
|
146 |
+
else:
|
147 |
+
print(f" β Failed to download {filename} after {self.max_retries} attempts: {e}")
|
148 |
+
return None
|
149 |
+
|
150 |
+
def _load_audio_info(self, file_path: Path, filename: str) -> Tuple[Path, Dict]:
|
151 |
+
"""Load audio information and audio data with memory optimization"""
|
152 |
+
try:
|
153 |
+
# Load audio data with librosa
|
154 |
+
sr = TARGET_SAMPLE_RATE if OPTIMIZE_MEMORY else None
|
155 |
+
audio_data, sample_rate = librosa.load(str(file_path), sr=sr, mono=True)
|
156 |
+
|
157 |
+
# Optimize audio data type for memory efficiency
|
158 |
+
if OPTIMIZE_MEMORY and AUDIO_DTYPE == 'int16':
|
159 |
+
# Convert float32 to int16 to halve memory usage
|
160 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
161 |
+
|
162 |
+
return file_path, {
|
163 |
+
'filename': filename,
|
164 |
+
'path': str(file_path),
|
165 |
+
'audio_array': audio_data, # Optimized audio array
|
166 |
+
'duration': len(audio_data) / sample_rate,
|
167 |
+
'sample_rate': sample_rate,
|
168 |
+
'channels': 1,
|
169 |
+
'dtype': str(audio_data.dtype)
|
170 |
+
}
|
171 |
+
except Exception as e:
|
172 |
+
# Try with soundfile as fallback
|
173 |
+
try:
|
174 |
+
import soundfile as sf
|
175 |
+
audio_data, sample_rate = sf.read(str(file_path))
|
176 |
+
if len(audio_data.shape) > 1:
|
177 |
+
audio_data = np.mean(audio_data, axis=1) # Convert to mono
|
178 |
+
|
179 |
+
# Apply sample rate optimization
|
180 |
+
if OPTIMIZE_MEMORY and TARGET_SAMPLE_RATE and sample_rate != TARGET_SAMPLE_RATE:
|
181 |
+
import scipy.signal
|
182 |
+
num_samples = int(len(audio_data) * TARGET_SAMPLE_RATE / sample_rate)
|
183 |
+
audio_data = scipy.signal.resample(audio_data, num_samples)
|
184 |
+
sample_rate = TARGET_SAMPLE_RATE
|
185 |
+
|
186 |
+
# Optimize data type
|
187 |
+
if OPTIMIZE_MEMORY and AUDIO_DTYPE == 'int16':
|
188 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
189 |
+
|
190 |
+
return file_path, {
|
191 |
+
'filename': filename,
|
192 |
+
'path': str(file_path),
|
193 |
+
'audio_array': audio_data,
|
194 |
+
'duration': len(audio_data) / sample_rate,
|
195 |
+
'sample_rate': sample_rate,
|
196 |
+
'channels': 1,
|
197 |
+
'dtype': str(audio_data.dtype)
|
198 |
+
}
|
199 |
+
except ImportError:
|
200 |
+
print(f" β Error loading audio {filename}: {e}")
|
201 |
+
return None
|
202 |
+
|
203 |
+
|
204 |
+
class BatchProcessor:
|
205 |
+
"""Processes annotations in batches to avoid memory issues"""
|
206 |
+
|
207 |
+
def __init__(self, downloader: AudioDownloader, temp_dir: str, batch_size: int = 100):
|
208 |
+
self.downloader = downloader
|
209 |
+
self.temp_dir = Path(temp_dir)
|
210 |
+
self.temp_dir.mkdir(exist_ok=True)
|
211 |
+
self.batch_size = batch_size
|
212 |
+
|
213 |
+
def process_batch(self, annotations: List[Dict], batch_id: int) -> Optional[Path]:
|
214 |
+
"""Process a batch of annotations and save to parquet"""
|
215 |
+
print(f"\nπ¦ Processing batch {batch_id} with {len(annotations)} annotations...")
|
216 |
+
|
217 |
+
batch_data = []
|
218 |
+
|
219 |
+
# Use ThreadPoolExecutor for concurrent downloads
|
220 |
+
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
|
221 |
+
# Submit all download tasks
|
222 |
+
future_to_annotation = {
|
223 |
+
executor.submit(self.downloader.download_audio, ann['audio_file_name']): ann
|
224 |
+
for ann in annotations
|
225 |
+
}
|
226 |
+
|
227 |
+
# Process completed downloads
|
228 |
+
for future in tqdm(as_completed(future_to_annotation),
|
229 |
+
total=len(annotations),
|
230 |
+
desc=f"Batch {batch_id}"):
|
231 |
+
annotation = future_to_annotation[future]
|
232 |
+
try:
|
233 |
+
result = future.result()
|
234 |
+
if result:
|
235 |
+
file_path, audio_info = result
|
236 |
+
# Structure audio data for HuggingFace compatibility
|
237 |
+
audio_array = audio_info['audio_array']
|
238 |
+
|
239 |
+
# Convert to list for serialization, handling different dtypes
|
240 |
+
if audio_info.get('dtype') == 'int16':
|
241 |
+
# For int16, convert to float32 for better compatibility with HF Audio
|
242 |
+
array_list = (audio_array.astype(np.float32) / 32767.0).tolist()
|
243 |
+
else:
|
244 |
+
array_list = audio_array.astype(np.float32).tolist()
|
245 |
+
|
246 |
+
audio_data = {
|
247 |
+
'array': array_list,
|
248 |
+
'sampling_rate': int(audio_info['sample_rate']),
|
249 |
+
'path': f"audio/{annotation['audio_file_name']}"
|
250 |
+
}
|
251 |
+
|
252 |
+
batch_data.append({
|
253 |
+
'audio': audio_data, # HuggingFace standard audio column
|
254 |
+
'file_name': f"audio/{annotation['audio_file_name']}", # Keep for compatibility
|
255 |
+
'sentence': annotation['sentence'],
|
256 |
+
'speaker': SPEAKER_NAME,
|
257 |
+
'duration': audio_info['duration'],
|
258 |
+
'sample_rate': audio_info['sample_rate']
|
259 |
+
})
|
260 |
+
except Exception as e:
|
261 |
+
print(f" β οΈ Error processing {annotation['audio_file_name']}: {e}")
|
262 |
+
|
263 |
+
if not batch_data:
|
264 |
+
print(f" β No valid audio files in batch {batch_id}")
|
265 |
+
return None
|
266 |
+
|
267 |
+
# Save batch to parquet
|
268 |
+
batch_file = self.temp_dir / f"batch_{batch_id:04d}.parquet"
|
269 |
+
df = pd.DataFrame(batch_data)
|
270 |
+
df.to_parquet(batch_file, index=False)
|
271 |
+
|
272 |
+
print(f" β
Saved {len(batch_data)} files to {batch_file}")
|
273 |
+
return batch_file
|
274 |
+
|
275 |
+
|
276 |
+
class DatasetUploader:
|
277 |
+
"""Handles HuggingFace dataset upload using best practices"""
|
278 |
+
|
279 |
+
def __init__(self, temp_dir: str, target_repo: str):
|
280 |
+
self.temp_dir = Path(temp_dir)
|
281 |
+
self.target_repo = target_repo
|
282 |
+
self.api = HfApi()
|
283 |
+
|
284 |
+
def prepare_dataset_structure(self) -> Path:
|
285 |
+
"""Prepare dataset structure for upload"""
|
286 |
+
dataset_dir = self.temp_dir / "dataset"
|
287 |
+
dataset_dir.mkdir(exist_ok=True)
|
288 |
+
|
289 |
+
# Create audio directory
|
290 |
+
audio_dir = dataset_dir / "audio"
|
291 |
+
audio_dir.mkdir(exist_ok=True)
|
292 |
+
|
293 |
+
batch_files = list(self.temp_dir.glob("batch_*.parquet"))
|
294 |
+
print(f"\nπ Preparing dataset structure from {len(batch_files)} batch files...")
|
295 |
+
|
296 |
+
if USE_GENERATOR:
|
297 |
+
# Memory-efficient generator-based approach
|
298 |
+
print("π§ Using memory-efficient generator approach...")
|
299 |
+
|
300 |
+
def audio_sample_generator():
|
301 |
+
"""Generator that yields one sample at a time to minimize memory usage"""
|
302 |
+
sample_count = 0
|
303 |
+
for batch_file in tqdm(batch_files, desc="Processing batch files"):
|
304 |
+
try:
|
305 |
+
df = pd.read_parquet(batch_file)
|
306 |
+
for _, row in df.iterrows():
|
307 |
+
sample_count += 1
|
308 |
+
yield {
|
309 |
+
'audio': row['audio'],
|
310 |
+
'file_name': row['file_name'],
|
311 |
+
'sentence': row['sentence'],
|
312 |
+
'speaker': row['speaker'],
|
313 |
+
'duration': row['duration'],
|
314 |
+
'sample_rate': row['sample_rate']
|
315 |
+
}
|
316 |
+
# Clean up processed batch file to save disk space
|
317 |
+
batch_file.unlink()
|
318 |
+
print(f" π§Ή Cleaned up {batch_file.name}")
|
319 |
+
except Exception as e:
|
320 |
+
print(f" β οΈ Error processing {batch_file}: {e}")
|
321 |
+
continue
|
322 |
+
|
323 |
+
print(f" β
Generated {sample_count} samples")
|
324 |
+
|
325 |
+
# Create dataset using generator (memory efficient)
|
326 |
+
print(f"\nπ Creating HuggingFace dataset using generator...")
|
327 |
+
|
328 |
+
features = Features({
|
329 |
+
'audio': Audio(sampling_rate=None),
|
330 |
+
'file_name': Value('string'),
|
331 |
+
'sentence': Value('string'),
|
332 |
+
'speaker': Value('string'),
|
333 |
+
'duration': Value('float32'),
|
334 |
+
'sample_rate': Value('int32')
|
335 |
+
})
|
336 |
+
|
337 |
+
dataset = Dataset.from_generator(
|
338 |
+
audio_sample_generator,
|
339 |
+
features=features,
|
340 |
+
cache_dir=str(self.temp_dir / "hf_cache") # Use local cache
|
341 |
+
)
|
342 |
+
|
343 |
+
num_samples = len(dataset)
|
344 |
+
|
345 |
+
else:
|
346 |
+
# Original approach (memory intensive)
|
347 |
+
print("β οΈ Using original approach - may consume significant memory...")
|
348 |
+
all_data = []
|
349 |
+
|
350 |
+
for batch_file in tqdm(batch_files, desc="Processing batches"):
|
351 |
+
df = pd.read_parquet(batch_file)
|
352 |
+
for _, row in df.iterrows():
|
353 |
+
all_data.append({
|
354 |
+
'audio': row['audio'],
|
355 |
+
'file_name': row['file_name'],
|
356 |
+
'sentence': row['sentence'],
|
357 |
+
'speaker': row['speaker'],
|
358 |
+
'duration': row['duration'],
|
359 |
+
'sample_rate': row['sample_rate']
|
360 |
+
})
|
361 |
+
|
362 |
+
print(f"\nπ Creating HuggingFace dataset with {len(all_data)} samples...")
|
363 |
+
df = pd.DataFrame(all_data)
|
364 |
+
|
365 |
+
features = Features({
|
366 |
+
'audio': Audio(sampling_rate=None),
|
367 |
+
'file_name': Value('string'),
|
368 |
+
'sentence': Value('string'),
|
369 |
+
'speaker': Value('string'),
|
370 |
+
'duration': Value('float32'),
|
371 |
+
'sample_rate': Value('int32')
|
372 |
+
})
|
373 |
+
|
374 |
+
dataset = Dataset.from_pandas(df, features=features)
|
375 |
+
num_samples = len(all_data)
|
376 |
+
|
377 |
+
# Save the dataset in HuggingFace format
|
378 |
+
print(f"πΎ Saving dataset to disk...")
|
379 |
+
dataset.save_to_disk(str(dataset_dir / "dataset"))
|
380 |
+
|
381 |
+
# Save metadata for compatibility (using a small sample to avoid memory issues)
|
382 |
+
print(f"π Creating metadata files...")
|
383 |
+
sample_data = []
|
384 |
+
for i, sample in enumerate(dataset.select(range(min(1000, len(dataset))))):
|
385 |
+
sample_data.append({
|
386 |
+
'file_name': sample['file_name'],
|
387 |
+
'sentence': sample['sentence'],
|
388 |
+
'speaker': sample['speaker'],
|
389 |
+
'duration': sample['duration'],
|
390 |
+
'sample_rate': sample['sample_rate']
|
391 |
+
})
|
392 |
+
|
393 |
+
metadata_df = pd.DataFrame(sample_data)
|
394 |
+
metadata_df.to_parquet(dataset_dir / "train.parquet", index=False)
|
395 |
+
metadata_df.to_parquet(dataset_dir / "metadata.parquet", index=False)
|
396 |
+
|
397 |
+
# Create dataset card
|
398 |
+
self._create_dataset_card(dataset_dir, num_samples)
|
399 |
+
|
400 |
+
print(f" β
Dataset prepared with {num_samples} samples in {dataset_dir}")
|
401 |
+
return dataset_dir
|
402 |
+
|
403 |
+
def _create_dataset_card(self, dataset_dir: Path, num_samples: int):
|
404 |
+
"""Create a basic dataset card"""
|
405 |
+
card_content = f"""---
|
406 |
+
license: mit
|
407 |
+
task_categories:
|
408 |
+
- text-to-speech
|
409 |
+
language:
|
410 |
+
- fa
|
411 |
+
tags:
|
412 |
+
- tts
|
413 |
+
- persian
|
414 |
+
- farsi
|
415 |
+
- speech-synthesis
|
416 |
+
size_categories:
|
417 |
+
- {self._get_size_category(num_samples)}
|
418 |
+
---
|
419 |
+
|
420 |
+
# {TARGET_REPO.split('/')[-1]}
|
421 |
+
|
422 |
+
This dataset contains {num_samples} Persian TTS samples with the speaker "{SPEAKER_NAME}".
|
423 |
+
|
424 |
+
## Dataset Structure
|
425 |
+
|
426 |
+
- `dataset/`: HuggingFace dataset format with audio arrays
|
427 |
+
- `train.parquet`: Training split metadata
|
428 |
+
- `metadata.parquet`: General metadata file (same content as train.parquet)
|
429 |
+
|
430 |
+
**Metadata columns:**
|
431 |
+
- `audio`: Audio data with array, sampling_rate, and path
|
432 |
+
- `array`: Audio data as float array
|
433 |
+
- `sampling_rate`: Sample rate in Hz
|
434 |
+
- `path`: Relative path to audio file
|
435 |
+
- `file_name`: Relative path to audio files (e.g., "audio/filename.mp3")
|
436 |
+
- `sentence`: Transcription text in Persian
|
437 |
+
- `speaker`: Speaker identifier ("{SPEAKER_NAME}")
|
438 |
+
- `duration`: Audio duration in seconds
|
439 |
+
- `sample_rate`: Audio sample rate in Hz
|
440 |
+
|
441 |
+
## Usage
|
442 |
+
|
443 |
+
```python
|
444 |
+
from datasets import load_dataset
|
445 |
+
|
446 |
+
# Load the dataset
|
447 |
+
dataset = load_dataset("{self.target_repo}")
|
448 |
+
|
449 |
+
# Access audio and transcription
|
450 |
+
for item in dataset['train']:
|
451 |
+
audio_data = item['audio'] # Dict with 'array', 'sampling_rate', 'path'
|
452 |
+
audio_array = audio_data['array'] # Actual audio as numpy array
|
453 |
+
sample_rate = audio_data['sampling_rate'] # Sample rate
|
454 |
+
text = item['sentence'] # Transcription
|
455 |
+
speaker = item['speaker'] # Speaker ID
|
456 |
+
|
457 |
+
# You can also load with streaming for large datasets
|
458 |
+
dataset = load_dataset("{self.target_repo}", streaming=True)
|
459 |
+
for item in dataset['train']:
|
460 |
+
audio = item['audio']['array'] # Audio array directly
|
461 |
+
text = item['sentence'] # Transcription
|
462 |
+
```
|
463 |
+
|
464 |
+
## Speaker
|
465 |
+
|
466 |
+
- **Speaker ID**: {SPEAKER_NAME}
|
467 |
+
- **Language**: Persian (Farsi)
|
468 |
+
- **Total Samples**: {num_samples}
|
469 |
+
|
470 |
+
Generated using the TTS annotation system.
|
471 |
+
"""
|
472 |
+
|
473 |
+
with open(dataset_dir / "README.md", 'w', encoding='utf-8') as f:
|
474 |
+
f.write(card_content)
|
475 |
+
|
476 |
+
def _get_size_category(self, num_samples: int) -> str:
|
477 |
+
"""Get size category for dataset card"""
|
478 |
+
if num_samples < 1000:
|
479 |
+
return "n<1K"
|
480 |
+
elif num_samples < 10000:
|
481 |
+
return "1K<n<10K"
|
482 |
+
elif num_samples < 100000:
|
483 |
+
return "10K<n<100K"
|
484 |
+
else:
|
485 |
+
return "100K<n<1M"
|
486 |
+
|
487 |
+
def upload_dataset(self, dataset_dir: Path):
|
488 |
+
"""Upload dataset using HuggingFace best practices"""
|
489 |
+
print(f"\nπ Uploading dataset to {self.target_repo}...")
|
490 |
+
|
491 |
+
try:
|
492 |
+
# Check if dataset directory exists in HF format
|
493 |
+
hf_dataset_dir = dataset_dir / "dataset"
|
494 |
+
if hf_dataset_dir.exists():
|
495 |
+
print("π¦ Uploading HuggingFace dataset format...")
|
496 |
+
# Load and push the dataset
|
497 |
+
dataset = Dataset.load_from_disk(str(hf_dataset_dir))
|
498 |
+
dataset.push_to_hub(
|
499 |
+
self.target_repo,
|
500 |
+
commit_message="Add TTS dataset with audio arrays"
|
501 |
+
)
|
502 |
+
print(f"β
Dataset upload completed successfully!")
|
503 |
+
else:
|
504 |
+
# Fallback to folder upload
|
505 |
+
print("π Uploading as folder...")
|
506 |
+
self.api.upload_large_folder(
|
507 |
+
repo_id=self.target_repo,
|
508 |
+
repo_type="dataset",
|
509 |
+
folder_path=str(dataset_dir)
|
510 |
+
)
|
511 |
+
print(f"β
Folder upload completed successfully!")
|
512 |
+
|
513 |
+
print(f"Dataset available at: https://huggingface.co/datasets/{self.target_repo}")
|
514 |
+
|
515 |
+
except Exception as e:
|
516 |
+
print(f"β Upload failed: {e}")
|
517 |
+
print("You can retry the upload or use the prepared dataset directory manually.")
|
518 |
+
print(f"Dataset directory: {dataset_dir}")
|
519 |
+
|
520 |
+
# Fallback to regular upload_folder with commit message
|
521 |
+
print("\nπ Trying fallback upload method...")
|
522 |
+
try:
|
523 |
+
self.api.upload_folder(
|
524 |
+
repo_id=self.target_repo,
|
525 |
+
repo_type="dataset",
|
526 |
+
folder_path=str(dataset_dir),
|
527 |
+
commit_message="Add TTS dataset with audio arrays"
|
528 |
+
)
|
529 |
+
print(f"β
Fallback upload completed successfully!")
|
530 |
+
print(f"Dataset available at: https://huggingface.co/datasets/{self.target_repo}")
|
531 |
+
except Exception as fallback_error:
|
532 |
+
print(f"β Fallback upload also failed: {fallback_error}")
|
533 |
+
print(f"Manual upload required. Dataset directory: {dataset_dir}")
|
534 |
+
raise
|
535 |
+
|
536 |
+
def get_approved_annotations():
|
537 |
+
"""Get all approved annotations from the database"""
|
538 |
+
connection = pymysql.connect(**DB_CONFIG)
|
539 |
+
try:
|
540 |
+
with connection.cursor(pymysql.cursors.DictCursor) as cursor:
|
541 |
+
# Query for approved annotations
|
542 |
+
query = """
|
543 |
+
SELECT
|
544 |
+
a.annotated_sentence as sentence,
|
545 |
+
td.filename as audio_file_name
|
546 |
+
FROM annotations a
|
547 |
+
JOIN validations v ON a.id = v.annotation_id
|
548 |
+
JOIN tts_data td ON a.tts_data_id = td.id
|
549 |
+
WHERE v.validated = 1
|
550 |
+
"""
|
551 |
+
cursor.execute(query)
|
552 |
+
results = cursor.fetchall()
|
553 |
+
print(f"Found {len(results)} approved annotations")
|
554 |
+
return results
|
555 |
+
finally:
|
556 |
+
connection.close()
|
557 |
+
|
558 |
+
|
559 |
+
def cleanup_temp_files(temp_dir: Path, keep_dataset: bool = True):
|
560 |
+
"""Clean up temporary files"""
|
561 |
+
if not keep_dataset and temp_dir.exists():
|
562 |
+
shutil.rmtree(temp_dir)
|
563 |
+
print(f"π§Ή Cleaned up temporary directory: {temp_dir}")
|
564 |
+
else:
|
565 |
+
# Only clean up batch files, keep the dataset
|
566 |
+
batch_files = list(temp_dir.glob("batch_*.parquet"))
|
567 |
+
for batch_file in batch_files:
|
568 |
+
batch_file.unlink()
|
569 |
+
print(f"π§Ή Cleaned up {len(batch_files)} batch files")
|
570 |
+
|
571 |
+
|
572 |
+
def main():
|
573 |
+
"""Main export function with improved error handling and performance"""
|
574 |
+
print("π Starting optimized TTS data export to Hugging Face...")
|
575 |
+
print(f"π Configuration:")
|
576 |
+
print(f" - Target repository: {TARGET_REPO}")
|
577 |
+
print(f" - Speaker: {SPEAKER_NAME}")
|
578 |
+
print(f" - Batch size: {BATCH_SIZE}")
|
579 |
+
print(f" - Cache directory: {CACHE_DIR}")
|
580 |
+
print(f" - Max concurrent downloads: {MAX_WORKERS}")
|
581 |
+
|
582 |
+
if OPTIMIZE_MEMORY:
|
583 |
+
print(f"π§ Memory Optimizations Enabled:")
|
584 |
+
print(f" - Target sample rate: {TARGET_SAMPLE_RATE or 'Original'}")
|
585 |
+
print(f" - Audio data type: {AUDIO_DTYPE}")
|
586 |
+
print(f" - Generator-based processing: {USE_GENERATOR}")
|
587 |
+
else:
|
588 |
+
print("β οΈ Memory optimizations disabled - may consume significant RAM")
|
589 |
+
|
590 |
+
try:
|
591 |
+
# Initialize components
|
592 |
+
cache_manager = CacheManager(CACHE_DIR)
|
593 |
+
downloader = AudioDownloader(AUDIO_BASE_URL, cache_manager, MAX_RETRIES)
|
594 |
+
processor = BatchProcessor(downloader, TEMP_DIR, BATCH_SIZE)
|
595 |
+
uploader = DatasetUploader(TEMP_DIR, TARGET_REPO)
|
596 |
+
|
597 |
+
# Get approved annotations
|
598 |
+
print("\nπ Fetching approved annotations from database...")
|
599 |
+
annotations = get_approved_annotations()
|
600 |
+
|
601 |
+
if not annotations:
|
602 |
+
print("β No approved annotations found!")
|
603 |
+
return
|
604 |
+
|
605 |
+
total_batches = (len(annotations) + BATCH_SIZE - 1) // BATCH_SIZE
|
606 |
+
print(f"π¦ Will process {len(annotations)} annotations in {total_batches} batches")
|
607 |
+
|
608 |
+
# Process annotations in batches
|
609 |
+
batch_files = []
|
610 |
+
for i in range(0, len(annotations), BATCH_SIZE):
|
611 |
+
batch_id = i // BATCH_SIZE + 1
|
612 |
+
batch_annotations = annotations[i:i + BATCH_SIZE]
|
613 |
+
|
614 |
+
batch_file = processor.process_batch(batch_annotations, batch_id)
|
615 |
+
if batch_file:
|
616 |
+
batch_files.append(batch_file)
|
617 |
+
|
618 |
+
if not batch_files:
|
619 |
+
print("β No batches were processed successfully!")
|
620 |
+
return
|
621 |
+
|
622 |
+
print(f"\nβ
Successfully processed {len(batch_files)} batches")
|
623 |
+
|
624 |
+
# Prepare dataset structure
|
625 |
+
dataset_dir = uploader.prepare_dataset_structure()
|
626 |
+
|
627 |
+
# Login to HF
|
628 |
+
print("\nπ Logging in to Hugging Face...")
|
629 |
+
try:
|
630 |
+
login() # Will use HF_TOKEN env var or prompt for token
|
631 |
+
except Exception as e:
|
632 |
+
print(f"β HF login failed: {e}")
|
633 |
+
print("Make sure you have HF_TOKEN environment variable set or login manually")
|
634 |
+
return
|
635 |
+
|
636 |
+
# Upload dataset
|
637 |
+
uploader.upload_dataset(dataset_dir)
|
638 |
+
|
639 |
+
# Cleanup
|
640 |
+
cleanup_temp_files(Path(TEMP_DIR), keep_dataset=True)
|
641 |
+
|
642 |
+
print("\nπ Export completed successfully!")
|
643 |
+
print(f"π Final stats:")
|
644 |
+
print(f" - Total annotations processed: {len(annotations)}")
|
645 |
+
print(f" - Successful batches: {len(batch_files)}")
|
646 |
+
print(f" - Dataset URL: https://huggingface.co/datasets/{TARGET_REPO}")
|
647 |
+
print(f" - Local dataset copy: {dataset_dir}")
|
648 |
+
|
649 |
+
except KeyboardInterrupt:
|
650 |
+
print("\nβ οΈ Process interrupted by user")
|
651 |
+
print("π‘ You can resume by running the script again - cached files will be reused")
|
652 |
+
except Exception as e:
|
653 |
+
print(f"\nβ Error during export: {e}")
|
654 |
+
print("π‘ Check the error above and try again - cached files will be reused")
|
655 |
+
raise
|
656 |
+
|
657 |
+
|
658 |
+
if __name__ == "__main__":
|
659 |
+
main()
|
utils/ftp_audio_loader.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ftp_audio_loader.py
|
2 |
+
|
3 |
+
import io
|
4 |
+
import ftplib
|
5 |
+
from urllib.parse import urlparse
|
6 |
+
import numpy as np
|
7 |
+
from pydub import AudioSegment
|
8 |
+
|
9 |
+
class FtpAudioLoader:
|
10 |
+
def __init__(self, ftp_url: str) -> None:
|
11 |
+
"""
|
12 |
+
Initialize FTP loader with URL format: ftp://username:password@host/path
|
13 |
+
"""
|
14 |
+
self.parsed_url = urlparse(ftp_url)
|
15 |
+
self.host = self.parsed_url.hostname
|
16 |
+
self.username = self.parsed_url.username
|
17 |
+
self.password = self.parsed_url.password
|
18 |
+
self.base_path = self.parsed_url.path
|
19 |
+
|
20 |
+
if not self.base_path.endswith("/"):
|
21 |
+
self.base_path += "/"
|
22 |
+
|
23 |
+
def _download_to_buf(self, filename: str) -> io.BytesIO:
|
24 |
+
"""Download file from FTP server to buffer"""
|
25 |
+
try:
|
26 |
+
# Connect to FTP server
|
27 |
+
ftp = ftplib.FTP()
|
28 |
+
ftp.connect(self.host)
|
29 |
+
ftp.login(self.username, self.password)
|
30 |
+
|
31 |
+
# Navigate to the directory
|
32 |
+
if self.base_path and self.base_path != "/":
|
33 |
+
ftp.cwd(self.base_path.strip("/"))
|
34 |
+
|
35 |
+
# Download file to buffer
|
36 |
+
buf = io.BytesIO()
|
37 |
+
ftp.retrbinary(f"RETR {filename}", buf.write)
|
38 |
+
ftp.quit()
|
39 |
+
|
40 |
+
buf.seek(0)
|
41 |
+
return buf
|
42 |
+
|
43 |
+
except ftplib.error_perm as e:
|
44 |
+
if "550" in str(e): # File not found
|
45 |
+
raise FileNotFoundError(f"'{filename}' not found on FTP server")
|
46 |
+
else:
|
47 |
+
raise Exception(f"FTP error: {e}")
|
48 |
+
except Exception as e:
|
49 |
+
raise Exception(f"Failed to download '{filename}' from FTP: {e}")
|
50 |
+
|
51 |
+
def load_audio(self, filename: str) -> tuple[int, np.ndarray]:
|
52 |
+
"""Load audio file and return sample rate and samples"""
|
53 |
+
buf = self._download_to_buf(filename)
|
54 |
+
seg = AudioSegment.from_file(buf)
|
55 |
+
samples = np.array(seg.get_array_of_samples())
|
56 |
+
|
57 |
+
if seg.channels > 1:
|
58 |
+
samples = samples.reshape(-1, seg.channels)
|
59 |
+
|
60 |
+
if np.issubdtype(samples.dtype, np.integer):
|
61 |
+
max_int = np.iinfo(samples.dtype).max
|
62 |
+
samples = samples.astype(np.float32)
|
63 |
+
samples /= max_int
|
64 |
+
else:
|
65 |
+
max_val = np.abs(samples).max()
|
66 |
+
if max_val > 1:
|
67 |
+
samples = samples / max_val
|
68 |
+
samples = samples.astype(np.float32)
|
69 |
+
|
70 |
+
return seg.frame_rate, samples
|
71 |
+
|
72 |
+
def get_audio_duration(self, filename: str) -> float:
|
73 |
+
"""Get duration of audio file in seconds"""
|
74 |
+
buf = self._download_to_buf(filename)
|
75 |
+
seg = AudioSegment.from_file(buf)
|
76 |
+
return len(seg) / 1000.0 # Convert milliseconds to seconds
|