from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder, SDXLMotionModel
from ..models.kolors_text_encoder import ChatGLMModel
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDXLPrompter, KolorsPrompter
from ..schedulers import EnhancedDDIMScheduler
from .sdxl_image import SDXLImagePipeline
from .dancer import lets_dance_xl
from typing import List
import torch
from tqdm import tqdm



class SDXLVideoPipeline(SDXLImagePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear")
        self.prompter = SDXLPrompter()
        # models
        self.text_encoder: SDXLTextEncoder = None
        self.text_encoder_2: SDXLTextEncoder2 = None
        self.text_encoder_kolors: ChatGLMModel = None
        self.unet: SDXLUNet = None
        self.vae_decoder: SDXLVAEDecoder = None
        self.vae_encoder: SDXLVAEEncoder = None
        # self.controlnet: MultiControlNetManager = None (TODO)
        self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None
        self.ipadapter: SDXLIpAdapter = None
        self.motion_modules: SDXLMotionModel = None


    def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        # Main models
        self.text_encoder = model_manager.fetch_model("sdxl_text_encoder")
        self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2")
        self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder")
        self.unet = model_manager.fetch_model("sdxl_unet")
        self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
        self.prompter.fetch_models(self.text_encoder)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)

        # ControlNets (TODO)

        # IP-Adapters
        self.ipadapter = model_manager.fetch_model("sdxl_ipadapter")
        self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder")

        # Motion Modules
        self.motion_modules = model_manager.fetch_model("sdxl_motion_modules")
        if self.motion_modules is None:
            self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear")

        # Kolors
        if self.text_encoder_kolors is not None:
            print("Switch to Kolors. The prompter will be replaced.")
            self.prompter = KolorsPrompter()
            self.prompter.fetch_models(self.text_encoder_kolors)
            # The schedulers of AniamteDiff and Kolors are incompatible. We align it with AniamteDiff.
            if self.motion_modules is None:
                self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100)
        else:
            self.prompter.fetch_models(self.text_encoder, self.text_encoder_2)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        pipe = SDXLVideoPipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes)
        return pipe
    

    def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32):
        images = [
            self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            for frame_id in range(latents.shape[0])
        ]
        return images
    

    def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
        latents = []
        for image in processed_images:
            image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
            latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            latents.append(latent.cpu())
        latents = torch.concat(latents, dim=0)
        return latents
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        num_frames=None,
        input_frames=None,
        ipadapter_images=None,
        ipadapter_scale=1.0,
        ipadapter_use_instant_style=False,
        controlnet_frames=None,
        denoising_strength=1.0,
        height=512,
        width=512,
        num_inference_steps=20,
        animatediff_batch_size = 16,
        animatediff_stride = 8,
        unet_batch_size = 1,
        controlnet_batch_size = 1,
        cross_frame_attention = False,
        smoother=None,
        smoother_progress_ids=[],
        tiled=False,
        tile_size=64,
        tile_stride=32,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Tiler parameters, batch size ...
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if self.motion_modules is None:
            noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
        else:
            noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
        if input_frames is None or denoising_strength == 1.0:
            latents = noise
        else:
            latents = self.encode_video(input_frames, **tiler_kwargs)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        latents = latents.to(self.device) # will be deleted for supporting long videos

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
        prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)

        # IP-Adapter
        if ipadapter_images is not None:
            if ipadapter_use_instant_style:
                self.ipadapter.set_less_adapter()
            else:
                self.ipadapter.set_full_adapter()
            ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
            ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
            ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
        else:
            ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}

        # Prepare ControlNets
        if controlnet_frames is not None:
            if isinstance(controlnet_frames[0], list):
                controlnet_frames_ = []
                for processor_id in range(len(controlnet_frames)):
                    controlnet_frames_.append(
                        torch.stack([
                            self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
                            for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
                        ], dim=1)
                    )
                controlnet_frames = torch.concat(controlnet_frames_, dim=0)
            else:
                controlnet_frames = torch.stack([
                    self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
                    for controlnet_frame in progress_bar_cmd(controlnet_frames)
                ], dim=1)
            controlnet_kwargs = {"controlnet_frames": controlnet_frames}
        else:
            controlnet_kwargs = {"controlnet_frames": None}

        # Prepare extra input
        extra_input = self.prepare_extra_input(latents)
        
        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(self.device)

            # Classifier-free guidance
            noise_pred_posi = lets_dance_xl(
                self.unet, motion_modules=self.motion_modules, controlnet=None,
                sample=latents, timestep=timestep,
                **prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **extra_input, **tiler_kwargs,
                device=self.device,
            )
            noise_pred_nega = lets_dance_xl(
                self.unet, motion_modules=self.motion_modules, controlnet=None,
                sample=latents, timestep=timestep,
                **prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **extra_input, **tiler_kwargs,
                device=self.device,
            )
            noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)

            # DDIM and smoother
            if smoother is not None and progress_id in smoother_progress_ids:
                rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
                rendered_frames = self.decode_video(rendered_frames)
                rendered_frames = smoother(rendered_frames, original_frames=input_frames)
                target_latents = self.encode_video(rendered_frames)
                noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
            latents = self.scheduler.step(noise_pred, timestep, latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        output_frames = self.decode_video(latents, **tiler_kwargs)

        # Post-process
        if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
            output_frames = smoother(output_frames, original_frames=input_frames)

        return output_frames