Copy from mknolan/internvl25-image-analyzer
Browse files
app.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as T
|
7 |
+
from torchvision.transforms.functional import InterpolationMode
|
8 |
+
from PIL import Image
|
9 |
+
import gradio as gr
|
10 |
+
from transformers import AutoModel, AutoTokenizer
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
14 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
15 |
+
|
16 |
+
# Configuration
|
17 |
+
MODEL_NAME = "OpenGVLab/InternVL2_5-8B" # Smaller model for faster loading
|
18 |
+
IMAGE_SIZE = 448
|
19 |
+
|
20 |
+
# Set up environment variables
|
21 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
22 |
+
|
23 |
+
# Utility functions for image processing
|
24 |
+
def build_transform(input_size):
|
25 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
26 |
+
transform = T.Compose([
|
27 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
28 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
29 |
+
T.ToTensor(),
|
30 |
+
T.Normalize(mean=MEAN, std=STD)
|
31 |
+
])
|
32 |
+
return transform
|
33 |
+
|
34 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
35 |
+
best_ratio_diff = float('inf')
|
36 |
+
best_ratio = (1, 1)
|
37 |
+
area = width * height
|
38 |
+
for ratio in target_ratios:
|
39 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
40 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
41 |
+
if ratio_diff < best_ratio_diff:
|
42 |
+
best_ratio_diff = ratio_diff
|
43 |
+
best_ratio = ratio
|
44 |
+
elif ratio_diff == best_ratio_diff:
|
45 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
46 |
+
best_ratio = ratio
|
47 |
+
return best_ratio
|
48 |
+
|
49 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
50 |
+
orig_width, orig_height = image.size
|
51 |
+
aspect_ratio = orig_width / orig_height
|
52 |
+
|
53 |
+
# calculate the existing image aspect ratio
|
54 |
+
target_ratios = set(
|
55 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
56 |
+
i * j <= max_num and i * j >= min_num)
|
57 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
58 |
+
|
59 |
+
# find the closest aspect ratio to the target
|
60 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
61 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
62 |
+
|
63 |
+
# calculate the target width and height
|
64 |
+
target_width = image_size * target_aspect_ratio[0]
|
65 |
+
target_height = image_size * target_aspect_ratio[1]
|
66 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
67 |
+
|
68 |
+
# resize the image
|
69 |
+
resized_img = image.resize((target_width, target_height))
|
70 |
+
processed_images = []
|
71 |
+
for i in range(blocks):
|
72 |
+
box = (
|
73 |
+
(i % (target_width // image_size)) * image_size,
|
74 |
+
(i // (target_width // image_size)) * image_size,
|
75 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
76 |
+
((i // (target_width // image_size)) + 1) * image_size
|
77 |
+
)
|
78 |
+
# split the image
|
79 |
+
split_img = resized_img.crop(box)
|
80 |
+
processed_images.append(split_img)
|
81 |
+
assert len(processed_images) == blocks
|
82 |
+
if use_thumbnail and len(processed_images) != 1:
|
83 |
+
thumbnail_img = image.resize((image_size, image_size))
|
84 |
+
processed_images.append(thumbnail_img)
|
85 |
+
return processed_images
|
86 |
+
|
87 |
+
# Load and preprocess image for the model - following the official documentation pattern
|
88 |
+
def load_image(image_pil, max_num=12):
|
89 |
+
# Process the image using dynamic_preprocess
|
90 |
+
processed_images = dynamic_preprocess(image_pil, image_size=IMAGE_SIZE, max_num=max_num)
|
91 |
+
|
92 |
+
# Convert PIL images to tensor format expected by the model
|
93 |
+
transform = build_transform(IMAGE_SIZE)
|
94 |
+
pixel_values = [transform(img) for img in processed_images]
|
95 |
+
pixel_values = torch.stack(pixel_values)
|
96 |
+
|
97 |
+
# Convert to appropriate data type
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
pixel_values = pixel_values.cuda().to(torch.bfloat16)
|
100 |
+
else:
|
101 |
+
pixel_values = pixel_values.to(torch.float32)
|
102 |
+
|
103 |
+
return pixel_values
|
104 |
+
|
105 |
+
# Function to split model across GPUs
|
106 |
+
def split_model(model_name):
|
107 |
+
device_map = {}
|
108 |
+
world_size = torch.cuda.device_count()
|
109 |
+
if world_size <= 1:
|
110 |
+
return "auto"
|
111 |
+
|
112 |
+
num_layers = {
|
113 |
+
'InternVL2_5-1B': 24,
|
114 |
+
'InternVL2_5-2B': 24,
|
115 |
+
'InternVL2_5-4B': 36,
|
116 |
+
'InternVL2_5-8B': 32,
|
117 |
+
'InternVL2_5-26B': 48,
|
118 |
+
'InternVL2_5-38B': 64,
|
119 |
+
'InternVL2_5-78B': 80
|
120 |
+
}[model_name]
|
121 |
+
|
122 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
123 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
124 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
125 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
126 |
+
layer_cnt = 0
|
127 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
128 |
+
for j in range(num_layer):
|
129 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
130 |
+
layer_cnt += 1
|
131 |
+
device_map['vision_model'] = 0
|
132 |
+
device_map['mlp1'] = 0
|
133 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
134 |
+
device_map['language_model.model.embed_tokens'] = 0
|
135 |
+
device_map['language_model.model.rotary_emb'] = 0
|
136 |
+
device_map['language_model.output'] = 0
|
137 |
+
device_map['language_model.model.norm'] = 0
|
138 |
+
device_map['language_model.lm_head'] = 0
|
139 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
140 |
+
|
141 |
+
return device_map
|
142 |
+
|
143 |
+
# Get model dtype
|
144 |
+
def get_model_dtype():
|
145 |
+
return torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
146 |
+
|
147 |
+
# Model loading function
|
148 |
+
def load_model():
|
149 |
+
print(f"\n=== Loading {MODEL_NAME} ===")
|
150 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
151 |
+
|
152 |
+
model_dtype = get_model_dtype()
|
153 |
+
print(f"Using model dtype: {model_dtype}")
|
154 |
+
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
print(f"GPU count: {torch.cuda.device_count()}")
|
157 |
+
for i in range(torch.cuda.device_count()):
|
158 |
+
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
159 |
+
|
160 |
+
# Memory info
|
161 |
+
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
|
162 |
+
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
|
163 |
+
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB")
|
164 |
+
|
165 |
+
# Determine device map
|
166 |
+
device_map = "auto"
|
167 |
+
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
|
168 |
+
model_short_name = MODEL_NAME.split('/')[-1]
|
169 |
+
device_map = split_model(model_short_name)
|
170 |
+
|
171 |
+
# Load model and tokenizer
|
172 |
+
try:
|
173 |
+
model = AutoModel.from_pretrained(
|
174 |
+
MODEL_NAME,
|
175 |
+
torch_dtype=model_dtype,
|
176 |
+
low_cpu_mem_usage=True,
|
177 |
+
trust_remote_code=True,
|
178 |
+
device_map=device_map
|
179 |
+
)
|
180 |
+
|
181 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
182 |
+
MODEL_NAME,
|
183 |
+
use_fast=False,
|
184 |
+
trust_remote_code=True
|
185 |
+
)
|
186 |
+
|
187 |
+
print(f"✓ Model and tokenizer loaded successfully!")
|
188 |
+
return model, tokenizer
|
189 |
+
except Exception as e:
|
190 |
+
print(f"❌ Error loading model: {e}")
|
191 |
+
import traceback
|
192 |
+
traceback.print_exc()
|
193 |
+
return None, None
|
194 |
+
|
195 |
+
# Image analysis function using the chat method from documentation
|
196 |
+
def analyze_image(model, tokenizer, image, prompt):
|
197 |
+
try:
|
198 |
+
# Check if image is valid
|
199 |
+
if image is None:
|
200 |
+
return "Please upload an image first."
|
201 |
+
|
202 |
+
# Process the image following official pattern
|
203 |
+
pixel_values = load_image(image)
|
204 |
+
|
205 |
+
# Debug info
|
206 |
+
print(f"Image processed: tensor shape {pixel_values.shape}, dtype {pixel_values.dtype}")
|
207 |
+
|
208 |
+
# Define generation config
|
209 |
+
generation_config = {
|
210 |
+
"max_new_tokens": 512,
|
211 |
+
"do_sample": False
|
212 |
+
}
|
213 |
+
|
214 |
+
# Use the model.chat method as shown in the official documentation
|
215 |
+
question = f"<image>\n{prompt}"
|
216 |
+
response, _ = model.chat(
|
217 |
+
tokenizer=tokenizer,
|
218 |
+
pixel_values=pixel_values,
|
219 |
+
question=question,
|
220 |
+
generation_config=generation_config,
|
221 |
+
history=None,
|
222 |
+
return_history=True
|
223 |
+
)
|
224 |
+
|
225 |
+
return response
|
226 |
+
except Exception as e:
|
227 |
+
import traceback
|
228 |
+
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}"
|
229 |
+
return error_msg
|
230 |
+
|
231 |
+
# Main function
|
232 |
+
def main():
|
233 |
+
# Load the model
|
234 |
+
model, tokenizer = load_model()
|
235 |
+
|
236 |
+
if model is None:
|
237 |
+
# Create an error interface if model loading failed
|
238 |
+
demo = gr.Interface(
|
239 |
+
fn=lambda x: "Model loading failed. Please check the logs for details.",
|
240 |
+
inputs=gr.Textbox(),
|
241 |
+
outputs=gr.Textbox(),
|
242 |
+
title="InternVL2.5 Image Analyzer - Error",
|
243 |
+
description="The model failed to load. Please check the logs for more information."
|
244 |
+
)
|
245 |
+
return demo
|
246 |
+
|
247 |
+
# Predefined prompts for analysis
|
248 |
+
prompts = [
|
249 |
+
"Describe this image in detail.",
|
250 |
+
"What can you tell me about this image?",
|
251 |
+
"Is there any text in this image? If so, can you read it?",
|
252 |
+
"What is the main subject of this image?",
|
253 |
+
"What emotions or feelings does this image convey?",
|
254 |
+
"Describe the composition and visual elements of this image.",
|
255 |
+
"Summarize what you see in this image in one paragraph."
|
256 |
+
]
|
257 |
+
|
258 |
+
# Create the interface
|
259 |
+
demo = gr.Interface(
|
260 |
+
fn=lambda img, prompt: analyze_image(model, tokenizer, img, prompt),
|
261 |
+
inputs=[
|
262 |
+
gr.Image(type="pil", label="Upload Image"),
|
263 |
+
gr.Dropdown(choices=prompts, value=prompts[0], label="Select a prompt or write your own below",
|
264 |
+
allow_custom_value=True)
|
265 |
+
],
|
266 |
+
outputs=gr.Textbox(label="Analysis Results", lines=15),
|
267 |
+
title="InternVL2.5 Image Analyzer",
|
268 |
+
description="Upload an image and ask the InternVL2.5 model to analyze it.",
|
269 |
+
examples=[
|
270 |
+
["example_images/example1.jpg", "Describe this image in detail."],
|
271 |
+
["example_images/example2.jpg", "What can you tell me about this image?"]
|
272 |
+
],
|
273 |
+
theme=gr.themes.Soft(),
|
274 |
+
allow_flagging="never"
|
275 |
+
)
|
276 |
+
|
277 |
+
return demo
|
278 |
+
|
279 |
+
# Run the application
|
280 |
+
if __name__ == "__main__":
|
281 |
+
try:
|
282 |
+
# Check for GPU
|
283 |
+
if not torch.cuda.is_available():
|
284 |
+
print("WARNING: CUDA is not available. The model requires a GPU to function properly.")
|
285 |
+
|
286 |
+
# Create and launch the interface
|
287 |
+
demo = main()
|
288 |
+
demo.launch(server_name="0.0.0.0")
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Error starting the application: {e}")
|
291 |
+
import traceback
|
292 |
+
traceback.print_exc()
|