Spaces:
Sleeping
Sleeping
File size: 3,229 Bytes
b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 4be3af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# module3.py
import requests
from typing import Optional
import logging
from dotenv import load_dotenv
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# .env νμΌ λ‘λ
load_dotenv()
# Hugging Face API μ 보
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
if not API_KEY:
raise ValueError("API_KEYκ° μ€μ λμ§ μμμ΅λλ€. .env νμΌμ νμΈνμΈμ.")
class AnswerVerifier:
def verify_answer(self, question: str, choices: dict) -> Optional[str]:
"""μ£Όμ΄μ§ λ¬Έμ μ 보기λ₯Ό λ°νμΌλ‘ μ λ΅μ κ²μ¦"""
try:
prompt = self._create_prompt(question, choices)
headers = {"Authorization": f"Bearer {API_KEY}"}
response = requests.post(
API_URL,
headers=headers,
json={"inputs": prompt}
)
response.raise_for_status()
response_data = response.json()
logger.debug(f"Raw API response: {response_data}")
# API μλ΅ μ²λ¦¬
generated_text = ""
if isinstance(response_data, list):
if response_data and isinstance(response_data[0], dict):
generated_text = response_data[0].get('generated_text', '')
else:
generated_text = response_data[0] if response_data else ''
elif isinstance(response_data, dict):
generated_text = response_data.get('generated_text', '')
else:
generated_text = str(response_data)
verified_answer = self._extract_answer(generated_text)
logger.info(f"Verified answer: {verified_answer}")
return verified_answer
except Exception as e:
logger.error(f"Error in verify_answer: {e}")
return None
def _create_prompt(self, question: str, choices: dict) -> str:
"""κ²μ¦μ μν ν둬ννΈ μμ±"""
return f"""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert mathematics teacher checking student answers.
Please analyze the following question and select the single best answer.
Output ONLY the letter of the correct answer (A, B, C, or D) without any explanation.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: {question}
A) {choices['A']}
B) {choices['B']}
C) {choices['C']}
D) {choices['D']}
Select the correct answer letter (A, B, C, or D):
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""".strip()
def _extract_answer(self, response: str) -> Optional[str]:
"""μλ΅μμ A, B, C, D μ€ νλλ₯Ό μΆμΆ"""
response = response.strip().upper()
valid_answers = {'A', 'B', 'C', 'D'}
# μλ΅μμ μ ν¨ν λ΅μ μ°ΎκΈ°
for answer in valid_answers:
if answer in response:
return answer
return None |