|
import os |
|
from math import floor |
|
from typing import Optional |
|
|
|
import spaces |
|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
|
|
model_name = "kotoba-tech/kotoba-whisper-v2.2" |
|
example_file = "sample_diarization_japanese.mp3" |
|
if torch.cuda.is_available(): |
|
pipe = pipeline( |
|
model=model_name, |
|
chunk_length_s=15, |
|
batch_size=16, |
|
torch_dtype=torch.bfloat16, |
|
device="cuda", |
|
model_kwargs={'attn_implementation': 'sdpa'}, |
|
trust_remote_code=True |
|
) |
|
else: |
|
pipe = pipeline(model=model_name, chunk_length_s=15, batch_size=16, trust_remote_code=True) |
|
|
|
|
|
def format_time(start: Optional[float], end: Optional[float]): |
|
|
|
def _format_time(seconds: Optional[float]): |
|
if seconds is None: |
|
return "[no timestamp available]" |
|
minutes = floor(seconds / 60) |
|
hours = floor(seconds / 3600) |
|
seconds = seconds - hours * 3600 - minutes * 60 |
|
m_seconds = floor(round(seconds - floor(seconds), 1) * 10) |
|
seconds = floor(seconds) |
|
return f'{minutes:02}:{seconds:02}.{m_seconds:01}' |
|
|
|
return f"[{_format_time(start)} -> {_format_time(end)}]:" |
|
|
|
|
|
@spaces.GPU |
|
def get_prediction(inputs, **kwargs): |
|
return pipe(inputs, **kwargs) |
|
|
|
|
|
def transcribe(inputs: str, |
|
add_punctuation: bool, |
|
add_silence_end: bool, |
|
add_silence_start: bool, |
|
num_speakers: float, |
|
min_speakers: float, |
|
max_speakers: float, |
|
chunk_length_s: float): |
|
if inputs is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
with open(inputs, "rb") as f: |
|
inputs = f.read() |
|
array = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) |
|
prediction = get_prediction( |
|
inputs={"array": array, "sampling_rate": pipe.feature_extractor.sampling_rate}, |
|
add_punctuation=add_punctuation, |
|
num_speakers=int(num_speakers) if num_speakers != 0 else None, |
|
min_speakers=int(min_speakers) if min_speakers != 0 else None, |
|
max_speakers=int(max_speakers) if max_speakers != 0 else None, |
|
chunk_length_s=int(chunk_length_s) if chunk_length_s != 30 else None, |
|
add_silence_end=0.5 if add_silence_end else None, |
|
add_silence_start=0.5 if add_silence_start else None |
|
) |
|
output = "" |
|
for n, s in enumerate(prediction["speaker_ids"]): |
|
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]]) |
|
output += f'### Speaker {n+1} \n{prediction[f"text/{s}"]}\n\n{text_timestamped}\n' |
|
return output |
|
|
|
|
|
description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses " |
|
f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).") |
|
title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}" |
|
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [ |
|
[example_file, True, True, True, 0, 0, 0, 30], |
|
[example_file, True, True, True, 4, 0, 0, 30] |
|
]} |
|
o_upload = gr.Markdown() |
|
o_mic = gr.Markdown() |
|
options = [ |
|
|
|
] |
|
i_upload = gr.Interface( |
|
inputs=[ |
|
gr.Audio(sources="upload", type="filepath", label="Audio file"), |
|
gr.Checkbox(label="add punctuation", value=True), |
|
gr.Checkbox(label="add silence at the end", value=True), |
|
gr.Checkbox(label="add silence at the start", value=True), |
|
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(5, 30, label="chunk length for ASR", value=30, step=1), |
|
], |
|
outputs=gr.Markdown(), |
|
**shared_config |
|
) |
|
i_mic = gr.Interface( |
|
inputs=[ |
|
gr.Audio(sources="microphone", type="filepath", label="Microphone input"), |
|
gr.Checkbox(label="add punctuation", value=True), |
|
gr.Checkbox(label="add silence at the end", value=True), |
|
gr.Checkbox(label="add silence at the start", value=True), |
|
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1), |
|
gr.Slider(5, 30, label="chunk length for ASR", value=30, step=1), |
|
], |
|
outputs=gr.Markdown(), |
|
**shared_config |
|
) |
|
with gr.Blocks() as demo: |
|
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"]) |
|
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True) |
|
|