import csv
import datetime
from collections import defaultdict

import numpy as np
import torch
import torchvision
import wandb
from termcolor import colored
from torch.utils.tensorboard import SummaryWriter

COMMON_TRAIN_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'),
                       ('episode', 'E', 'int'), ('episode_length', 'L', 'int'),
                       ('episode_reward', 'R', 'float'),
                       ('fps', 'FPS', 'float'), ('total_time', 'T', 'time')]

COMMON_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'),
                      ('episode', 'E', 'int'), ('episode_length', 'L', 'int'),
                      ('episode_reward', 'R', 'float'),
                      ('total_time', 'T', 'time')]


class AverageMeter(object):
    def __init__(self):
        self._sum = 0
        self._count = 0

    def update(self, value, n=1):
        self._sum += value
        self._count += n

    def value(self):
        return self._sum / max(1, self._count)


class MetersGroup(object):
    def __init__(self, csv_file_name, formating, use_wandb):
        self._csv_file_name = csv_file_name
        self._formating = formating
        self._meters = defaultdict(AverageMeter)
        self._csv_file = None
        self._csv_writer = None
        self.use_wandb = use_wandb

    def log(self, key, value, n=1):
        self._meters[key].update(value, n)

    def _prime_meters(self):
        data = dict()
        for key, meter in self._meters.items():
            if key.startswith('train'):
                key = key[len('train') + 1:]
            else:
                key = key[len('eval') + 1:]
            key = key.replace('/', '_')
            data[key] = meter.value()
        return data

    def _remove_old_entries(self, data):
        rows = []
        with self._csv_file_name.open('r') as f:
            reader = csv.DictReader(f)
            for row in reader:
                if 'episode' in row:
                    # BUGFIX: covers weird cases where CSV are badly written
                    if row['episode'] == '': 
                        rows.append(row)
                        continue
                    if type(row['episode']) == type(None):
                        continue
                    if float(row['episode']) >= data['episode']:
                        break
                    rows.append(row)
        with self._csv_file_name.open('w') as f:
            # To handle CSV that have more keys than new data
            keys = set(data.keys())
            if len(rows) > 0: keys = keys | set(row.keys())
            keys = sorted(list(keys))
            #
            writer = csv.DictWriter(f,
                                    fieldnames=keys,
                                    restval=0.0)
            writer.writeheader()
            for row in rows:
                writer.writerow(row)

    def _dump_to_csv(self, data):
        if self._csv_writer is None:
            should_write_header = True
            if self._csv_file_name.exists():
                self._remove_old_entries(data)
                should_write_header = False

            self._csv_file = self._csv_file_name.open('a')
            self._csv_writer = csv.DictWriter(self._csv_file,
                                              fieldnames=sorted(data.keys()),
                                              restval=0.0)
            if should_write_header:
                self._csv_writer.writeheader()

        # To handle components that start training later 
        # (restval covers only when data has less keys than the CSV)
        if self._csv_writer.fieldnames != sorted(data.keys()) and \
             len(self._csv_writer.fieldnames) < len(data.keys()):
            self._csv_file.close()
            self._csv_file = self._csv_file_name.open('r')
            dict_reader = csv.DictReader(self._csv_file)
            rows = [row for row in dict_reader]
            self._csv_file.close()
            self._csv_file = self._csv_file_name.open('w')
            self._csv_writer = csv.DictWriter(self._csv_file,
                                              fieldnames=sorted(data.keys()),
                                              restval=0.0)
            self._csv_writer.writeheader()
            for row in rows:
                self._csv_writer.writerow(row)

        self._csv_writer.writerow(data)
        self._csv_file.flush()

    def _format(self, key, value, ty):
        if ty == 'int':
            value = int(value)
            return f'{key}: {value}'
        elif ty == 'float':
            return f'{key}: {value:.04f}'
        elif ty == 'time':
            value = str(datetime.timedelta(seconds=int(value)))
            return f'{key}: {value}'
        else:
            raise f'invalid format type: {ty}'

    def _dump_to_console(self, data, prefix):
        prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green')
        pieces = [f'| {prefix: <14}']
        for key, disp_key, ty in self._formating:
            value = data.get(key, 0)
            pieces.append(self._format(disp_key, value, ty))
        print(' | '.join(pieces))

    def _dump_to_wandb(self, data):
        wandb.log(data)

    def dump(self, step, prefix):
        if len(self._meters) == 0:
            return
        data = self._prime_meters()
        data['frame'] = step
        if self.use_wandb:
            wandb_data = {prefix + '/' + key: val for key, val in data.items()}
            self._dump_to_wandb(data=wandb_data)
        # self._dump_to_csv(data)
        self._dump_to_console(data, prefix)
        self._meters.clear()


class Logger(object):
    def __init__(self, log_dir, use_tb, use_wandb):
        self._log_dir = log_dir
        self._train_mg = MetersGroup(log_dir / 'train.csv',
                                     formating=COMMON_TRAIN_FORMAT,
                                     use_wandb=use_wandb)
        self._eval_mg = MetersGroup(log_dir / 'eval.csv',
                                    formating=COMMON_EVAL_FORMAT,
                                    use_wandb=use_wandb)
        if use_tb:
            self._sw = SummaryWriter(str(log_dir / 'tb'))
        else:
            self._sw = None
        self.use_wandb = use_wandb

    def _try_sw_log(self, key, value, step):
        if self._sw is not None:
            self._sw.add_scalar(key, value, step)

    def log(self, key, value, step):
        assert key.startswith('train') or key.startswith('eval')
        if type(value) == torch.Tensor:
            value = value.item()
        self._try_sw_log(key, value, step)
        mg = self._train_mg if key.startswith('train') else self._eval_mg
        mg.log(key, value)

    def log_metrics(self, metrics, step, ty):
        for key, value in metrics.items():
            self.log(f'{ty}/{key}', value, step)

    def dump(self, step, ty=None):
        if ty is None or ty == 'eval':
            self._eval_mg.dump(step, 'eval')
        if ty is None or ty == 'train':
            self._train_mg.dump(step, 'train')

    def log_and_dump_ctx(self, step, ty):
        return LogAndDumpCtx(self, step, ty)

    def log_visual(self, data, step):
        if self._sw is not None: 
            for k, v in data.items():
                if len(v.shape) == 3:
                    self._sw.add_image(k, v)
                else:
                    if len(v.shape) == 4:
                        v = np.expand_dims(v, axis=0)
                    self._sw.add_video(k, v, global_step=step, fps=15)
        if self.use_wandb:
            for k, v in data.items():
                if type(v) is not np.ndarray:
                    v = v.cpu()
                if v.dtype not in [np.uint8]:
                    v = v*255
                v = np.uint8(v)
                if len(v.shape) == 3:
                    if v.shape[0] == 3:
                        v = v.transpose(1,2,0)
                    # Note: defaulting to save only one image/video to save storage on wandb
                    wandb.log({k: wandb.Image(v)},)
                else:
                    # Note: defaulting to save only one image/video to save storage on wandb
                    wandb.log({k: wandb.Video(v, fps=15, format="gif")},)


class LogAndDumpCtx:
    def __init__(self, logger, step, ty):
        self._logger = logger
        self._step = step
        self._ty = ty

    def __enter__(self):
        return self

    def __call__(self, key, value):
        self._logger.log(f'{self._ty}/{key}', value, self._step)

    def __exit__(self, *args):
        self._logger.dump(self._step, self._ty)