Spaces:
Paused
Paused
File size: 3,760 Bytes
29df9bc 888d022 916e00a 29df9bc 916e00a 29df9bc 5b2069d 29df9bc 82ddd60 29df9bc 15408a7 29df9bc 284c9cc 888d022 29df9bc 15408a7 2a8011b 29df9bc 888d022 29df9bc 15408a7 f6091f7 29df9bc 2a8011b 29df9bc ac5a6cc d73f75f 15408a7 29df9bc 15408a7 74edd3f 53763e2 048048c 15408a7 2a8011b 29df9bc 284c9cc 29df9bc 15408a7 29df9bc 15408a7 29df9bc 15408a7 29df9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import { createParser } from 'eventsource-parser';
export const OPENAI_API_HOST = process.env.OPENAI_API_HOST || "https://api.openai.com";
export const OPENAI_API_TYPE = process.env.OPENAI_API_TYPE || "openai";
export class LLMError extends Error {
constructor(message, type, param, code) {
super(message);
this.name = 'LLMError';
this.type = type;
this.param = param;
this.code = code;
}
}
export const LLMStream = async (
model,
systemPrompt,
temperature,
messages,
functions
) => {
let url = `${OPENAI_API_HOST}/v1/chat/completions`;
const res = await fetch(url, {
headers: {
'Content-Type': 'application/json',
...(OPENAI_API_TYPE === 'openai' && {
Authorization: `Bearer ${process.env.OPENAI_API_KEY}`
})
},
method: 'POST',
body: JSON.stringify({
...(OPENAI_API_TYPE === 'openai' && {model: model.id}),
messages: [
{
role: 'system',
content: systemPrompt,
},
...messages,
],
max_tokens: 1000,
temperature: temperature,
functions: [functions['googleCustomSearch']['googleCustomSearchSchema']],
stream: true,
}),
});
const encoder = new TextEncoder();
const decoder = new TextDecoder();
if (res.status !== 200) {
const result = await res.json();
if (result.error) {
throw new LLMError(
result.error.message,
result.error.type,
result.error.param,
result.error.code,
);
} else {
throw new Error(
`OpenAI API returned an error: ${
decoder.decode(result?.value) || result.statusText
}`,
);
}
}
const stream = new ReadableStream({
async start(controller) {
let func_call = {
"name": null,
"arguments": "",
};
const onParse = async (event) => {
if (event.type === 'event') {
const data = event.data;
try {
if (data === "[DONE]" || !data) {
return;
}
const json = JSON.parse(data);
if (Array.isArray(json.choices) && json.choices.length > 0) {
const choice = json.choices[0];
const delta = choice.delta;
if (choice.finish_reason === "stop") {
controller.close();
return;
}
if (delta.hasOwnProperty("function_call")) {
if (delta.function_call.hasOwnProperty("name")) {
func_call["name"] = delta.function_call["name"];
}
if (delta.function_call.hasOwnProperty("arguments")) {
func_call["arguments"] += delta.function_call["arguments"];
}
}
if (choice.finish_reason === "function_call") {
// function call here using func_call
const fn = functions[func_call.name][func_call.name];
const funcResult = await fn(func_call.arguments);
const serpQueue = encoder.encode(funcResult);
controller.enqueue(serpQueue);
}
if (delta && 'content' in delta) {
const text = delta.content;
const queue = encoder.encode(text);
controller.enqueue(queue);
}
} else {
console.error('No choices found in json');
}
} catch (e) {
console.log(e);
controller.error(e);
}
}
};
const parser = createParser(onParse);
for await (const chunk of res.body) {
parser.feed(decoder.decode(chunk));
}
},
});
return stream;
};
|