
Refactor ControlNetReq class to remove unused import and add controlnets, control_images, and controlnet_conditioning_scale attributes
daf9c75
# tabs/image_tab.py | |
import gradio as gr | |
from modules.events.flux_events import * | |
from modules.events.sdxl_events import * | |
from modules.helpers.common_helpers import * | |
from modules.helpers.flux_helpers import * | |
from modules.helpers.sdxl_helpers import * | |
from config import flux_models, sdxl_models, loras | |
def image_tab(): | |
with gr.Tab(label="🖼️ Image"): | |
with gr.Tabs(): | |
flux_tab() | |
sdxl_tab() | |
def flux_tab(): | |
with gr.Tab("Flux"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group() as image_options: | |
model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True) | |
prompt = gr.Textbox(lines=5, label="Prompt") | |
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪") | |
with gr.Accordion("Loras", open=True): # Lora Gallery | |
lora_gallery = gr.Gallery( | |
label="Gallery", | |
value=[(lora['image'], lora['title']) for lora in loras], | |
allow_preview=False, | |
columns=3, | |
rows=3, | |
type="pil" | |
) | |
with gr.Group(): | |
with gr.Column(): | |
with gr.Row(): | |
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path") | |
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA") | |
custom_lora_info = gr.HTML(visible=False) | |
add_lora = gr.Button(value="Add LoRA") | |
enabled_loras = gr.State(value=[]) | |
with gr.Group(): | |
with gr.Row(): | |
for i in range(6): # only support max 6 loras due to inference time | |
with gr.Column(): | |
with gr.Column(scale=2): | |
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True) | |
with gr.Column(): | |
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False) | |
with gr.Accordion("Embeddings", open=False): # Embeddings | |
gr.Label("To be implemented") | |
with gr.Accordion("Image Options"): # Image Options | |
with gr.Tabs(): | |
image_options = { | |
"img2img": "Upload Image", | |
"inpaint": "Upload Image", | |
"canny": "Upload Image", | |
"pose": "Upload Image", | |
"depth": "Upload Image", | |
} | |
for image_option, label in image_options.items(): | |
with gr.Tab(image_option): | |
if not image_option in ['inpaint', 'scribble']: | |
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil") | |
elif image_option in ['inpaint', 'scribble']: | |
globals()[f"{image_option}_image"] = gr.ImageEditor( | |
label=label, | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(), | |
interactive=True, | |
type="pil", | |
) | |
# Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint) | |
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True) | |
resize_mode = gr.Radio( | |
label="Resize Mode", | |
choices=["crop and resize", "resize only", "resize and fill"], | |
value="resize and fill", | |
interactive=True | |
) | |
with gr.Column(): | |
with gr.Group(): | |
output_images = gr.Gallery( | |
label="Output Images", | |
value=[], | |
allow_preview=True, | |
type="pil", | |
interactive=False, | |
) | |
generate_images = gr.Button(value="Generate Images", variant="primary") | |
with gr.Accordion("Advance Settings", open=True): | |
with gr.Row(): | |
scheduler = gr.Dropdown( | |
label="Scheduler", | |
choices = [ | |
"fm_euler" | |
], | |
value="fm_euler", | |
interactive=True | |
) | |
with gr.Row(): | |
for column in range(2): | |
with gr.Column(): | |
options = [ | |
("Height", "image_height", 64, 1024, 64, 1024, True), | |
("Width", "image_width", 64, 1024, 64, 1024, True), | |
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True), | |
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True), | |
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False), | |
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True), | |
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True), | |
] | |
for label, var_name, min_val, max_val, step, value, visible in options[column::2]: | |
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True) | |
with gr.Row(): | |
refiner = gr.Checkbox( | |
label="Refiner 🧪", | |
value=False, | |
) | |
vae = gr.Checkbox( | |
label="VAE", | |
value=True, | |
) | |
# Events | |
# Base Options | |
fast_generation.change(update_fast_generation, [fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore | |
# Lora Gallery | |
lora_gallery.select(selected_lora_from_gallery, None, selected_lora) | |
custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora]) | |
add_lora.click(add_to_enabled_loras, [selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras]) | |
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore | |
for i in range(6): | |
globals()[f"lora_remove_{i}"].click( | |
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index), | |
[enabled_loras], | |
[enabled_loras] | |
) | |
# Generate Image | |
generate_images.click( | |
generate_image, # type: ignore | |
[ | |
model, prompt, fast_generation, enabled_loras, | |
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore | |
img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore | |
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore | |
resize_mode, | |
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore | |
image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore | |
refiner, vae | |
], | |
[output_images] | |
) | |
def sdxl_tab(): | |
with gr.Tab("SDXL"): | |
gr.Label("To be implemented") | |