Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langgraph.graph import Graph
|
2 |
+
# from langchain_groq import ChatGroq
|
3 |
+
# llm = langchain_groq(model="llama3-70b-8192")
|
4 |
+
# llm.invoke("hi how are you")
|
5 |
+
import streamlit as st
|
6 |
+
import os
|
7 |
+
import base64
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from langchain_groq import ChatGroq
|
10 |
+
from langchain.chains import LLMMathChain, LLMChain
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
13 |
+
from langchain.agents.agent_types import AgentType
|
14 |
+
from langchain.agents import Tool, initialize_agent
|
15 |
+
from langchain_community.callbacks.streamlit import StreamlitCallbackHandler
|
16 |
+
from groq import Groq
|
17 |
+
|
18 |
+
load_dotenv()
|
19 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
20 |
+
|
21 |
+
if not groq_api_key:
|
22 |
+
st.error("Groq API Key not found in .env file")
|
23 |
+
st.stop()
|
24 |
+
|
25 |
+
st.set_page_config(page_title="Medical Bot", page_icon="👨🔬")
|
26 |
+
st.title("Medical Bot")
|
27 |
+
llm_text = ChatGroq(model="gemma2-9b-it", groq_api_key=groq_api_key)
|
28 |
+
llm_image = ChatGroq(model="llama-3.2-90b-vision-preview", groq_api_key=groq_api_key)
|
29 |
+
|
30 |
+
wikipedia_wrapper = WikipediaAPIWrapper()
|
31 |
+
wikipedia_tool = Tool(
|
32 |
+
name="Wikipedia",
|
33 |
+
func=wikipedia_wrapper.run,
|
34 |
+
description="A tool for searching the Internet to find various information on the topics mentioned."
|
35 |
+
)
|
36 |
+
math_chain = LLMMathChain.from_llm(llm=llm_text)
|
37 |
+
calculator = Tool(
|
38 |
+
name="Calculator",
|
39 |
+
func=math_chain.run,
|
40 |
+
description="A tool for solving mathematical problems. Provide only the mathematical expressions."
|
41 |
+
)
|
42 |
+
|
43 |
+
prompt = """
|
44 |
+
You are a mathematical problem-solving assistant tasked with helping users solve their questions. Arrive at the solution logically, providing a clear and step-by-step explanation. Present your response in a structured point-wise format for better understanding.
|
45 |
+
Question: {question}
|
46 |
+
Answer:
|
47 |
+
"""
|
48 |
+
|
49 |
+
prompt_template = PromptTemplate(
|
50 |
+
input_variables=["question"],
|
51 |
+
template=prompt
|
52 |
+
)
|
53 |
+
# Combine all the tools into a chain for text questions
|
54 |
+
chain = LLMChain(llm=llm_text, prompt=prompt_template)
|
55 |
+
|
56 |
+
reasoning_tool = Tool(
|
57 |
+
name="Reasoning Tool",
|
58 |
+
func=chain.run,
|
59 |
+
description="A tool for answering logic-based and reasoning questions."
|
60 |
+
)
|
61 |
+
|
62 |
+
# Initialize the agents for text questions
|
63 |
+
assistant_agent_text = initialize_agent(
|
64 |
+
tools=[wikipedia_tool, calculator, reasoning_tool],
|
65 |
+
llm=llm_text,
|
66 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
67 |
+
verbose=False,
|
68 |
+
handle_parsing_errors=True
|
69 |
+
)
|
70 |
+
|
71 |
+
if "messages" not in st.session_state:
|
72 |
+
st.session_state["messages"] = [
|
73 |
+
{"role": "assistant", "content": "Welcome! I am your Assistant. How can I help you today?"}
|
74 |
+
]
|
75 |
+
|
76 |
+
for msg in st.session_state.messages:
|
77 |
+
if msg["role"] == "user" and "image" in msg:
|
78 |
+
st.chat_message(msg["role"]).write(msg['content'])
|
79 |
+
st.image(msg["image"], caption='Uploaded Image', use_column_width=True)
|
80 |
+
else:
|
81 |
+
st.chat_message(msg["role"]).write(msg['content'])
|
82 |
+
|
83 |
+
st.sidebar.header("Navigation")
|
84 |
+
if st.sidebar.button("Text Question"):
|
85 |
+
st.session_state["section"] = "text"
|
86 |
+
if st.sidebar.button("Image Question"):
|
87 |
+
st.session_state["section"] = "image"
|
88 |
+
|
89 |
+
if "section" not in st.session_state:
|
90 |
+
st.session_state["section"] = "text"
|
91 |
+
|
92 |
+
def clean_response(response):
|
93 |
+
if "```" in response:
|
94 |
+
response = response.split("```")[1].strip()
|
95 |
+
return response
|
96 |
+
|
97 |
+
if st.session_state["section"] == "text":
|
98 |
+
st.header("Text Question")
|
99 |
+
st.write("Please enter your question below, and I will provide a detailed description of the problem and suggest a solution for it.")
|
100 |
+
question = st.text_area("Your Question:")
|
101 |
+
if st.button("Get Answer"):
|
102 |
+
if question:
|
103 |
+
with st.spinner("Generating response..."):
|
104 |
+
st.session_state.messages.append({"role": "user", "content": question})
|
105 |
+
st.chat_message("user").write(question)
|
106 |
+
|
107 |
+
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
108 |
+
try:
|
109 |
+
response = assistant_agent_text.run(st.session_state.messages, callbacks=[st_cb])
|
110 |
+
cleaned_response = clean_response(response)
|
111 |
+
st.session_state.messages.append({'role': 'assistant', "content": cleaned_response})
|
112 |
+
st.write('### Response:')
|
113 |
+
st.success(cleaned_response)
|
114 |
+
except ValueError as e:
|
115 |
+
st.error(f"An error occurred: {e}")
|
116 |
+
else:
|
117 |
+
st.warning("Please enter a question to get an answer.")
|
118 |
+
|
119 |
+
elif st.session_state["section"] == "image":
|
120 |
+
st.header("Image Question")
|
121 |
+
st.write("Please enter your question below and upload the medical image. I will provide a detailed description of the problem and suggest a solution for it.")
|
122 |
+
question = st.text_area("Your Question:", "Example: What is the patient suffering from?")
|
123 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
124 |
+
|
125 |
+
if st.button("Get Answer"):
|
126 |
+
if question and uploaded_file is not None:
|
127 |
+
with st.spinner("Generating response..."):
|
128 |
+
image_data = uploaded_file.read()
|
129 |
+
image_data_url = f"data:image/jpeg;base64,{base64.b64encode(image_data).decode()}"
|
130 |
+
st.session_state.messages.append({"role": "user", "content": question, "image": image_data})
|
131 |
+
st.chat_message("user").write(question)
|
132 |
+
st.image(image_data, caption='Uploaded Image', use_column_width=True)
|
133 |
+
|
134 |
+
client = Groq()
|
135 |
+
|
136 |
+
messages = [
|
137 |
+
{
|
138 |
+
"role": "user",
|
139 |
+
"content": [
|
140 |
+
{
|
141 |
+
"type": "text",
|
142 |
+
"text": question
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"type": "image_url",
|
146 |
+
"image_url": {
|
147 |
+
"url": image_data_url
|
148 |
+
}
|
149 |
+
}
|
150 |
+
]
|
151 |
+
}
|
152 |
+
]
|
153 |
+
try:
|
154 |
+
completion = client.chat.completions.create(
|
155 |
+
model="llama-3.2-90b-vision-preview",
|
156 |
+
messages=messages,
|
157 |
+
temperature=1,
|
158 |
+
max_tokens=1024,
|
159 |
+
top_p=1,
|
160 |
+
stream=False,
|
161 |
+
stop=None,
|
162 |
+
)
|
163 |
+
response = completion.choices[0].message.content
|
164 |
+
cleaned_response = clean_response(response)
|
165 |
+
st.session_state.messages.append({'role': 'assistant', "content": cleaned_response})
|
166 |
+
st.write('### Response:')
|
167 |
+
st.success(cleaned_response)
|
168 |
+
except ValueError as e:
|
169 |
+
st.error(f"An error occurred: {e}")
|
170 |
+
else:
|
171 |
+
st.warning("Please enter a question and upload an image to get an answer.")
|