Spaces:
Running
on
Zero
Running
on
Zero
#import spaces # | |
import time | |
print(f"Starting up: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
# source openalex_env_map/bin/activate | |
# Standard library imports | |
import os | |
#Enforce local cching: | |
# os.makedirs("./pip_cache", exist_ok=True) | |
# Pip: | |
# os.makedirs("./pip_cache", exist_ok=True) | |
# os.environ["PIP_CACHE_DIR"] = os.path.abspath("./pip_cache") | |
# # MPL: | |
# os.makedirs("./mpl_cache", exist_ok=True) | |
# os.environ["MPLCONFIGDIR"] = os.path.abspath("./mpl_cache") | |
# #Transformers | |
# os.makedirs("./transformers_cache", exist_ok=True) | |
# os.environ["TRANSFORMERS_CACHE"] = os.path.abspath("./transformers_cache") | |
# import numba | |
# print(numba.config) | |
# print("Numba threads:", numba.get_num_threads()) | |
# numba.set_num_threads(16) | |
# print("Updated Numba threads:", numba.get_num_threads()) | |
# import datamapplot.medoids | |
# print(help(datamapplot.medoids)) | |
from pathlib import Path | |
from datetime import datetime | |
from itertools import chain | |
import ast # Add this import at the top with the standard library imports | |
import base64 | |
import json | |
import pickle | |
# Third-party imports | |
import numpy as np | |
import pandas as pd | |
import torch | |
import gradio as gr | |
print(f"Gradio version: {gr.__version__}") | |
import subprocess | |
import re | |
from color_utils import rgba_to_hex | |
def print_datamapplot_version(): | |
try: | |
# On Unix systems, you can pipe commands by setting shell=True. | |
version = subprocess.check_output("pip freeze | grep datamapplot", shell=True, text=True) | |
print("datamapplot version:", version.strip()) | |
except subprocess.CalledProcessError: | |
print("datamapplot not found in pip freeze output.") | |
print_datamapplot_version() | |
from fastapi import FastAPI | |
from fastapi.staticfiles import StaticFiles | |
import uvicorn | |
import matplotlib.pyplot as plt | |
import tqdm | |
import colormaps | |
import matplotlib.colors as mcolors | |
from matplotlib.colors import Normalize | |
import random | |
import opinionated # for fonts | |
plt.style.use("opinionated_rc") | |
from sklearn.neighbors import NearestNeighbors | |
def is_running_in_hf_zero_gpu(): | |
print(os.environ.get("SPACES_ZERO_GPU")) | |
return os.environ.get("SPACES_ZERO_GPU") | |
is_running_in_hf_zero_gpu() | |
def is_running_in_hf_space(): | |
return "SPACE_ID" in os.environ | |
# #if is_running_in_hf_space(): | |
# from spaces.zero.client import _get_token | |
try: | |
import spaces | |
from spaces.zero.client import _get_token | |
HAS_SPACES = True | |
except (ImportError, ModuleNotFoundError): | |
HAS_SPACES = False | |
# Provide a harmless fallback so decorators don't explode | |
if not HAS_SPACES: | |
class _Dummy: | |
def GPU(self, *a, **k): | |
def deco(f): # no-op decorator | |
return f | |
return deco | |
spaces = _Dummy() # fake module object | |
def _get_token(request): # stub, never called off-Space | |
return "" | |
#if is_running_in_hf_space(): | |
#import spaces # necessary to run on Zero. | |
#print(f"Spaces version: {spaces.__version__}") | |
import datamapplot | |
import pyalex | |
# Local imports | |
from openalex_utils import ( | |
openalex_url_to_pyalex_query, | |
get_field, | |
process_records_to_df, | |
openalex_url_to_filename, | |
get_records_from_dois, | |
openalex_url_to_readable_name | |
) | |
from ui_utils import highlight_queries | |
from styles import DATAMAP_CUSTOM_CSS | |
from data_setup import ( | |
download_required_files, | |
setup_basemap_data, | |
setup_mapper, | |
setup_embedding_model, | |
) | |
from network_utils import create_citation_graph, draw_citation_graph | |
# Add colormap chooser imports | |
from colormap_chooser import ColormapChooser, setup_colormaps | |
# Add legend builder imports | |
try: | |
from legend_builders import continuous_legend_html_css, categorical_legend_html_css | |
HAS_LEGEND_BUILDERS = True | |
except ImportError: | |
print("Warning: legend_builders.py not found. Legends will be disabled.") | |
HAS_LEGEND_BUILDERS = False | |
# Configure OpenAlex | |
pyalex.config.email = "maximilian.noichl@uni-bamberg.de" | |
print(f"Imports completed: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
# Set up colormaps for the chooser | |
print("Setting up colormaps...") | |
colormap_categories = setup_colormaps( | |
included_collections=['matplotlib', 'cmocean', 'scientific', 'cmasher'], | |
excluded_collections=['colorcet', 'carbonplan', 'sciviz'] | |
) | |
colormap_chooser = ColormapChooser( | |
categories=colormap_categories, | |
smooth_steps=10, | |
strip_width=200, | |
strip_height=50, | |
css_height=200, | |
# show_search=False, | |
# show_category=False, | |
# show_preview=False, | |
# show_selected_name=True, | |
# show_selected_info=False, | |
gallery_kwargs=dict(columns=3, allow_preview=False, height="200px") | |
) | |
# Create a static directory to store the dynamic HTML files | |
static_dir = Path("./static") | |
static_dir.mkdir(parents=True, exist_ok=True) | |
# Tell Gradio which absolute paths are allowed to be served | |
os.environ["GRADIO_ALLOWED_PATHS"] = str(static_dir.resolve()) | |
print("os.environ['GRADIO_ALLOWED_PATHS'] =", os.environ["GRADIO_ALLOWED_PATHS"]) | |
# Create FastAPI app | |
app = FastAPI() | |
# Mount the static directory | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
# Resource configuration | |
REQUIRED_FILES = { | |
"100k_filtered_OA_sample_cluster_and_positions_supervised.pkl": | |
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/100k_filtered_OA_sample_cluster_and_positions_supervised.pkl", | |
"umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl": | |
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl" | |
} | |
BASEMAP_PATH = "100k_filtered_OA_sample_cluster_and_positions_supervised.pkl" | |
MAPPER_PARAMS_PATH = "umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl" | |
MODEL_NAME = "m7n/discipline-tuned_specter_2_024" | |
# Initialize models and data | |
start_time = time.time() | |
print("Initializing resources...") | |
download_required_files(REQUIRED_FILES) | |
basedata_df = setup_basemap_data(BASEMAP_PATH) | |
mapper = setup_mapper(MAPPER_PARAMS_PATH) | |
model = setup_embedding_model(MODEL_NAME) | |
print(f"Resources initialized in {time.time() - start_time:.2f} seconds") | |
# Setting up decorators for embedding on HF-Zero: | |
def no_op_decorator(func): | |
"""A no-op (no operation) decorator that simply returns the function.""" | |
def wrapper(*args, **kwargs): | |
# Do nothing special | |
return func(*args, **kwargs) | |
return wrapper | |
# # Decide which decorator to use based on environment | |
# decorator_to_use = spaces.GPU() if is_running_in_hf_space() else no_op_decorator | |
# #duration=120 | |
# ← forces the detector to see a GPU-aware fn | |
def _warmup(): | |
print("Warming up...") | |
_warmup() | |
# if is_running_in_hf_space(): | |
def create_embeddings_30(texts_to_embedd): | |
"""Create embeddings for the input texts using the loaded model.""" | |
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192) | |
def create_embeddings_59(texts_to_embedd): | |
"""Create embeddings for the input texts using the loaded model.""" | |
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192) | |
def create_embeddings_120(texts_to_embedd): | |
"""Create embeddings for the input texts using the loaded model.""" | |
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192) | |
def create_embeddings_299(texts_to_embedd): | |
"""Create embeddings for the input texts using the loaded model.""" | |
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192) | |
# else: | |
def create_embeddings(texts_to_embedd): | |
"""Create embeddings for the input texts using the loaded model.""" | |
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192) | |
def predict(request: gr.Request, text_input, sample_size_slider, reduce_sample_checkbox, | |
sample_reduction_method, plot_type_dropdown, | |
locally_approximate_publication_date_checkbox, | |
download_csv_checkbox, download_png_checkbox, citation_graph_checkbox, | |
csv_upload, highlight_color, selected_colormap_name, seed_value, | |
progress=gr.Progress()): | |
""" | |
Main prediction pipeline that processes OpenAlex queries and creates visualizations. | |
Args: | |
request (gr.Request): Gradio request object | |
text_input (str): OpenAlex query URL | |
sample_size_slider (int): Maximum number of samples to process | |
reduce_sample_checkbox (bool): Whether to reduce sample size | |
sample_reduction_method (str): Method for sample reduction ("Random" or "Order of Results") | |
plot_type_dropdown (str): Type of plot coloring ("No special coloring", "Time-based coloring", "Categorical coloring") | |
locally_approximate_publication_date_checkbox (bool): Whether to approximate publication date locally before plotting. | |
download_csv_checkbox (bool): Whether to download CSV data | |
download_png_checkbox (bool): Whether to download PNG data | |
citation_graph_checkbox (bool): Whether to add citation graph | |
csv_upload (str): Path to uploaded CSV file | |
highlight_color (str): Color for highlighting points | |
selected_colormap_name (str): Name of the selected colormap for time-based coloring | |
progress (gr.Progress): Gradio progress tracker | |
Returns: | |
tuple: (link to visualization, iframe HTML) | |
""" | |
# Initialize start_time at the beginning of the function | |
start_time = time.time() | |
# Convert dropdown selection to boolean flags for backward compatibility | |
plot_time_checkbox = plot_type_dropdown == "Time-based coloring" | |
treat_as_categorical_checkbox = plot_type_dropdown == "Categorical coloring" | |
# Helper function to generate error responses | |
def create_error_response(error_message): | |
return [ | |
error_message, | |
gr.DownloadButton(label="Download Interactive Visualization", value='html_file_path', visible=False), | |
gr.DownloadButton(label="Download CSV Data", value='csv_file_path', visible=False), | |
gr.DownloadButton(label="Download Static Plot", value='png_file_path', visible=False), | |
gr.Button(visible=False) | |
] | |
# Get the authentication token | |
if is_running_in_hf_space(): | |
token = _get_token(request) | |
payload = token.split('.')[1] | |
payload = f"{payload}{'=' * ((4 - len(payload) % 4) % 4)}" | |
payload = json.loads(base64.urlsafe_b64decode(payload).decode()) | |
print(payload) | |
user = payload['user'] | |
if user == None: | |
user_type = "anonymous" | |
elif '[pro]' in user: | |
user_type = "pro" | |
else: | |
user_type = "registered" | |
print(f"User type: {user_type}") | |
# Check if a file has been uploaded or if we need to use OpenAlex query | |
if csv_upload is not None: | |
print(f"Using uploaded file instead of OpenAlex query: {csv_upload}") | |
try: | |
file_extension = os.path.splitext(csv_upload)[1].lower() | |
if file_extension == '.csv': | |
# Read the CSV file | |
records_df = pd.read_csv(csv_upload) | |
filename = os.path.splitext(os.path.basename(csv_upload))[0] | |
# Check if this is a DOI-list CSV (single column, named 'doi' or similar) | |
if (len(records_df.columns) == 1 and records_df.columns[0].lower() in ['doi', 'dois']): | |
from openalex_utils import get_records_from_dois | |
doi_list = records_df.iloc[:,0].dropna().astype(str).tolist() | |
print(f"Detected DOI list with {len(doi_list)} DOIs. Downloading records from OpenAlex...") | |
records_df = get_records_from_dois(doi_list) | |
filename = f"doilist_{len(doi_list)}" | |
else: | |
# Convert *every* cell that looks like a serialized list/dict | |
def _try_parse_obj(cell): | |
if isinstance(cell, str): | |
txt = cell.strip() | |
if (txt.startswith('{') and txt.endswith('}')) or (txt.startswith('[') and txt.endswith(']')): | |
# Try JSON first | |
try: | |
return json.loads(txt) | |
except Exception: | |
pass | |
# Fallback to Python-repr (single quotes etc.) | |
try: | |
return ast.literal_eval(txt) | |
except Exception: | |
pass | |
return cell | |
records_df = records_df.map(_try_parse_obj) | |
print(records_df.head()) | |
else: | |
error_message = f"Error: Unsupported file type. Please upload a CSV or PKL file." | |
return create_error_response(error_message) | |
records_df = process_records_to_df(records_df) | |
# Make sure we have the required columns | |
required_columns = ['title', 'abstract', 'publication_year'] | |
missing_columns = [col for col in required_columns if col not in records_df.columns] | |
if missing_columns: | |
error_message = f"Error: Uploaded file is missing required columns: {', '.join(missing_columns)}" | |
return create_error_response(error_message) | |
print(f"Successfully loaded {len(records_df)} records from uploaded file") | |
progress(0.2, desc="Processing uploaded data...") | |
# For uploaded files, set all records to query_index 0 | |
records_df['query_index'] = 0 | |
except Exception as e: | |
error_message = f"Error processing uploaded file: {str(e)}" | |
return create_error_response(error_message) | |
else: | |
# Check if input is empty or whitespace | |
print(f"Input: {text_input}") | |
if not text_input or text_input.isspace(): | |
error_message = "Error: Please enter a valid OpenAlex URL in the 'OpenAlex-search URL'-field or upload a CSV file" | |
return create_error_response(error_message) | |
print('Starting data projection pipeline') | |
progress(0.1, desc="Starting...") | |
# Split input into multiple URLs if present | |
urls = [url.strip() for url in text_input.split(';')] | |
records = [] | |
query_indices = [] # Track which query each record comes from | |
total_query_length = 0 | |
expected_download_count = 0 # Track expected number of records to download for progress | |
# Use first URL for filename | |
first_query, first_params = openalex_url_to_pyalex_query(urls[0]) | |
filename = openalex_url_to_filename(urls[0]) | |
print(f"Filename: {filename}") | |
# Process each URL | |
for i, url in enumerate(urls): | |
query, params = openalex_url_to_pyalex_query(url) | |
query_length = query.count() | |
total_query_length += query_length | |
# Calculate expected download count for this query | |
if reduce_sample_checkbox and sample_reduction_method == "First n samples": | |
expected_for_this_query = min(sample_size_slider, query_length) | |
elif reduce_sample_checkbox and sample_reduction_method == "n random samples": | |
expected_for_this_query = min(sample_size_slider, query_length) | |
else: # "All" | |
expected_for_this_query = query_length | |
expected_download_count += expected_for_this_query | |
print(f'Requesting {query_length} entries from query {i+1}/{len(urls)} (expecting to download {expected_for_this_query})...') | |
# Use PyAlex sampling for random samples - much more efficient! | |
if reduce_sample_checkbox and sample_reduction_method == "n random samples": | |
# Use PyAlex's built-in sample method for efficient server-side sampling | |
target_size = min(sample_size_slider, query_length) | |
try: | |
seed_int = int(seed_value) if seed_value.strip() else 42 | |
except ValueError: | |
seed_int = 42 | |
print(f"Invalid seed value '{seed_value}', using default: 42") | |
print(f'Attempting PyAlex sampling: {target_size} from {query_length} (seed={seed_int})') | |
try: | |
# Check if PyAlex sample method exists and works | |
if hasattr(query, 'sample'): | |
sampled_query = query.sample(target_size, seed=seed_int) | |
# IMPORTANT: When using sample(), must use method='page' for pagination! | |
sampled_records = [] | |
records_count = 0 | |
for page in sampled_query.paginate(per_page=200, method='page', n_max=None): | |
for record in page: | |
sampled_records.append(record) | |
records_count += 1 | |
progress(0.1 + (0.15 * records_count / target_size), | |
desc=f"Getting sampled data from query {i+1}/{len(urls)}... ({records_count}/{target_size})") | |
print(f'PyAlex sampling successful: got {len(sampled_records)} records') | |
else: | |
raise AttributeError("sample method not available") | |
except Exception as e: | |
print(f"PyAlex sampling failed ({e}), using fallback method...") | |
# Fallback: get all records and sample manually | |
all_records = [] | |
records_count = 0 | |
# Use default cursor pagination for non-sampled queries | |
for page in query.paginate(per_page=200, n_max=None): | |
for record in page: | |
all_records.append(record) | |
records_count += 1 | |
progress(0.1 + (0.15 * records_count / query_length), | |
desc=f"Downloading for sampling from query {i+1}/{len(urls)}...") | |
# Now sample manually | |
if len(all_records) > target_size: | |
import random | |
random.seed(seed_int) | |
sampled_records = random.sample(all_records, target_size) | |
else: | |
sampled_records = all_records | |
print(f'Fallback sampling: got {len(sampled_records)} from {len(all_records)} total') | |
# Add the sampled records | |
for idx, record in enumerate(sampled_records): | |
records.append(record) | |
query_indices.append(i) | |
# Safe progress calculation | |
if expected_download_count > 0: | |
progress_val = 0.1 + (0.2 * len(records) / expected_download_count) | |
else: | |
progress_val = 0.1 | |
progress(progress_val, desc=f"Processing sampled data from query {i+1}/{len(urls)}...") | |
else: | |
# Keep existing logic for "First n samples" and "All" | |
target_size = sample_size_slider if reduce_sample_checkbox and sample_reduction_method == "First n samples" else query_length | |
records_per_query = 0 | |
print(f"Query {i+1}: target_size={target_size}, query_length={query_length}, method={sample_reduction_method}") | |
should_break_current_query = False | |
# For "First n samples", limit the maximum records fetched to avoid over-downloading | |
max_records_to_fetch = target_size if reduce_sample_checkbox and sample_reduction_method == "First n samples" else None | |
for page in query.paginate(per_page=200, n_max=max_records_to_fetch): | |
# Add retry mechanism for processing each page | |
max_retries = 5 | |
base_wait_time = 1 # Starting wait time in seconds | |
exponent = 1.5 # Exponential factor | |
for retry_attempt in range(max_retries): | |
try: | |
for record in page: | |
# Safety check: don't process if we've already reached target | |
if reduce_sample_checkbox and sample_reduction_method == "First n samples" and records_per_query >= target_size: | |
print(f"Reached target size before processing: {records_per_query}/{target_size}, breaking from download") | |
should_break_current_query = True | |
break | |
records.append(record) | |
query_indices.append(i) # Track which query this record comes from | |
records_per_query += 1 | |
# Safe progress calculation | |
if expected_download_count > 0: | |
progress_val = 0.1 + (0.2 * len(records) / expected_download_count) | |
else: | |
progress_val = 0.1 | |
progress(progress_val, desc=f"Getting data from query {i+1}/{len(urls)}...") | |
if reduce_sample_checkbox and sample_reduction_method == "First n samples" and records_per_query >= target_size: | |
print(f"Reached target size: {records_per_query}/{target_size}, breaking from download") | |
should_break_current_query = True | |
break | |
# If we get here without an exception, break the retry loop | |
break | |
except Exception as e: | |
print(f"Error processing page: {e}") | |
if retry_attempt < max_retries - 1: | |
wait_time = base_wait_time * (exponent ** retry_attempt) + random.random() | |
print(f"Retrying in {wait_time:.2f} seconds (attempt {retry_attempt + 1}/{max_retries})...") | |
time.sleep(wait_time) | |
else: | |
print(f"Maximum retries reached. Continuing with next page.") | |
# Break out of retry loop if we've reached target | |
if should_break_current_query: | |
break | |
if should_break_current_query: | |
print(f"Successfully broke from page loop for query {i+1}") | |
break | |
# Continue to next query - don't break out of the main query loop | |
print(f"Query completed in {time.time() - start_time:.2f} seconds") | |
print(f"Total records collected: {len(records)}") | |
print(f"Expected to download: {expected_download_count}") | |
print(f"Available from all queries: {total_query_length}") | |
print(f"Sample method used: {sample_reduction_method}") | |
print(f"Reduce sample enabled: {reduce_sample_checkbox}") | |
if sample_reduction_method == "n random samples": | |
print(f"Seed value: {seed_value}") | |
# Process records | |
processing_start = time.time() | |
records_df = process_records_to_df(records) | |
# Add query_index to the dataframe | |
records_df['query_index'] = query_indices[:len(records_df)] | |
if reduce_sample_checkbox and sample_reduction_method != "All" and sample_reduction_method != "n random samples": | |
# Note: We skip "n random samples" here because PyAlex sampling is already done above | |
sample_size = min(sample_size_slider, len(records_df)) | |
# Check if we have multiple queries for sampling logic | |
urls = [url.strip() for url in text_input.split(';')] if text_input else [''] | |
has_multiple_queries = len(urls) > 1 and not csv_upload | |
# If using categorical coloring with multiple queries, sample each query independently | |
if treat_as_categorical_checkbox and has_multiple_queries: | |
# Sample the full sample_size from each query independently | |
unique_queries = sorted(records_df['query_index'].unique()) | |
sampled_dfs = [] | |
for query_idx in unique_queries: | |
query_records = records_df[records_df['query_index'] == query_idx] | |
# Apply the full sample size to each query (only for "First n samples") | |
current_sample_size = min(sample_size_slider, len(query_records)) | |
if sample_reduction_method == "First n samples": | |
sampled_query = query_records.iloc[:current_sample_size] | |
sampled_dfs.append(sampled_query) | |
print(f"Query {query_idx+1}: sampled {len(sampled_query)} records from {len(query_records)} available") | |
records_df = pd.concat(sampled_dfs, ignore_index=True) | |
print(f"Total after independent sampling: {len(records_df)} records") | |
print(f"Query distribution: {records_df['query_index'].value_counts().sort_index()}") | |
else: | |
# Original sampling logic for single query or non-categorical (only "First n samples" now) | |
if sample_reduction_method == "First n samples": | |
records_df = records_df.iloc[:sample_size] | |
print(f"Records processed in {time.time() - processing_start:.2f} seconds") | |
# Create embeddings - this happens regardless of data source | |
embedding_start = time.time() | |
progress(0.3, desc="Embedding Data...") | |
texts_to_embedd = [f"{title} {abstract}" for title, abstract in zip(records_df['title'], records_df['abstract'])] | |
if is_running_in_hf_space(): | |
if len(texts_to_embedd) < 2000: | |
embeddings = create_embeddings_30(texts_to_embedd) | |
elif len(texts_to_embedd) < 4000 or user_type == "anonymous": | |
embeddings = create_embeddings_59(texts_to_embedd) | |
elif len(texts_to_embedd) < 8000: | |
embeddings = create_embeddings_120(texts_to_embedd) | |
else: | |
embeddings = create_embeddings_299(texts_to_embedd) | |
else: | |
embeddings = create_embeddings(texts_to_embedd) | |
print(f"Embeddings created in {time.time() - embedding_start:.2f} seconds") | |
# Project embeddings | |
projection_start = time.time() | |
progress(0.5, desc="Project into UMAP-embedding...") | |
umap_embeddings = mapper.transform(embeddings) | |
records_df[['x','y']] = umap_embeddings | |
print(f"Projection completed in {time.time() - projection_start:.2f} seconds") | |
# Prepare visualization data | |
viz_prep_start = time.time() | |
progress(0.6, desc="Preparing visualization data...") | |
# Set up colors: | |
basedata_df['color'] = '#ced4d211' | |
# Convert highlight_color to hex if it isn't already | |
if not highlight_color.startswith('#'): | |
highlight_color = rgba_to_hex(highlight_color) | |
highlight_color = rgba_to_hex(highlight_color) | |
print('Highlight color:', highlight_color) | |
# Check if we have multiple queries and categorical coloring is enabled | |
urls = [url.strip() for url in text_input.split(';')] if text_input else [''] | |
has_multiple_queries = len(urls) > 1 and not csv_upload | |
if treat_as_categorical_checkbox and has_multiple_queries: | |
# Use categorical coloring for multiple queries | |
print("Using categorical coloring for multiple queries") | |
# Get colors from selected colormap or use default categorical colors | |
unique_queries = sorted(records_df['query_index'].unique()) | |
num_queries = len(unique_queries) | |
if selected_colormap_name and selected_colormap_name.strip(): | |
try: | |
# Use selected colormap to generate distinct colors | |
categorical_cmap = plt.get_cmap(selected_colormap_name) | |
# Sample colors evenly spaced across the colormap | |
categorical_colors = [mcolors.to_hex(categorical_cmap(i / max(1, num_queries - 1))) | |
for i in range(num_queries)] | |
except Exception as e: | |
print(f"Warning: Could not load colormap '{selected_colormap_name}' for categorical coloring: {e}") | |
# Fallback to default categorical colors | |
categorical_colors = [ | |
'#e41a1c', # Red | |
'#377eb8', # Blue | |
'#4daf4a', # Green | |
'#984ea3', # Purple | |
'#ff7f00', # Orange | |
'#ffff33', # Yellow | |
'#a65628', # Brown | |
'#f781bf', # Pink | |
'#999999', # Gray | |
'#66c2a5', # Teal | |
'#fc8d62', # Light Orange | |
'#8da0cb', # Light Blue | |
'#e78ac3', # Light Pink | |
'#a6d854', # Light Green | |
'#ffd92f', # Light Yellow | |
'#e5c494', # Beige | |
'#b3b3b3', # Light Gray | |
] | |
else: | |
# Use default categorical colors | |
categorical_colors = [ | |
'#e41a1c', # Red | |
'#377eb8', # Blue | |
'#4daf4a', # Green | |
'#984ea3', # Purple | |
'#ff7f00', # Orange | |
'#ffff33', # Yellow | |
'#a65628', # Brown | |
'#f781bf', # Pink | |
'#999999', # Gray | |
'#66c2a5', # Teal | |
'#fc8d62', # Light Orange | |
'#8da0cb', # Light Blue | |
'#e78ac3', # Light Pink | |
'#a6d854', # Light Green | |
'#ffd92f', # Light Yellow | |
'#e5c494', # Beige | |
'#b3b3b3', # Light Gray | |
] | |
# Assign colors based on query_index | |
query_color_map = {query_idx: categorical_colors[i % len(categorical_colors)] | |
for i, query_idx in enumerate(unique_queries)} | |
records_df['color'] = records_df['query_index'].map(query_color_map) | |
# Add query_label for better identification | |
records_df['query_label'] = records_df['query_index'].apply(lambda x: f"Query {x+1}") | |
elif plot_time_checkbox: | |
# Use selected colormap if provided, otherwise default to haline | |
if selected_colormap_name and selected_colormap_name.strip(): | |
try: | |
time_cmap = plt.get_cmap(selected_colormap_name) | |
except Exception as e: | |
print(f"Warning: Could not load colormap '{selected_colormap_name}': {e}") | |
time_cmap = colormaps.haline | |
else: | |
time_cmap = colormaps.haline | |
if not locally_approximate_publication_date_checkbox: | |
# Create color mapping based on publication years | |
years = pd.to_numeric(records_df['publication_year']) | |
norm = mcolors.Normalize(vmin=years.min(), vmax=years.max()) | |
records_df['color'] = [mcolors.to_hex(time_cmap(norm(year))) for year in years] | |
# Store for legend generation | |
years_for_legend = years | |
legend_label = "Publication Year" | |
legend_cmap = time_cmap | |
else: | |
n_neighbors = 10 # Adjust this value to control smoothing | |
nn = NearestNeighbors(n_neighbors=n_neighbors) | |
nn.fit(umap_embeddings) | |
distances, indices = nn.kneighbors(umap_embeddings) | |
# Calculate local average publication year for each point | |
local_years = np.array([ | |
np.mean(records_df['publication_year'].iloc[idx]) | |
for idx in indices | |
]) | |
norm = mcolors.Normalize(vmin=local_years.min(), vmax=local_years.max()) | |
records_df['color'] = [mcolors.to_hex(time_cmap(norm(year))) for year in local_years] | |
# Store for legend generation | |
years_for_legend = local_years | |
legend_label = "Approx. Year" | |
legend_cmap = time_cmap | |
else: | |
# No special coloring - use highlight color | |
records_df['color'] = highlight_color | |
stacked_df = pd.concat([basedata_df, records_df], axis=0, ignore_index=True) | |
stacked_df = stacked_df.fillna("Unlabelled") | |
stacked_df['parsed_field'] = [get_field(row) for ix, row in stacked_df.iterrows()] | |
# Create marker size array: basemap points = 2, query result points = 4 | |
marker_sizes = np.concatenate([ | |
np.full(len(basedata_df), 1.), # Basemap points | |
np.full(len(records_df), 2.5) # Query result points | |
]) | |
extra_data = pd.DataFrame(stacked_df['doi']) | |
print(f"Visualization data prepared in {time.time() - viz_prep_start:.2f} seconds") | |
# Prepare file paths | |
html_file_name = f"{filename}.html" | |
html_file_path = static_dir / html_file_name | |
csv_file_path = static_dir / f"{filename}.csv" | |
png_file_path = static_dir / f"{filename}.png" | |
if citation_graph_checkbox: | |
citation_graph_start = time.time() | |
citation_graph = create_citation_graph(records_df) | |
graph_file_name = f"{filename}_citation_graph.jpg" | |
graph_file_path = static_dir / graph_file_name | |
draw_citation_graph(citation_graph,path=graph_file_path,bundle_edges=True, | |
min_max_coordinates=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])]) | |
print(f"Citation graph created and saved in {time.time() - citation_graph_start:.2f} seconds") | |
# Create and save plot | |
plot_start = time.time() | |
progress(0.7, desc="Creating interactive plot...") | |
# Create a solid black colormap | |
black_cmap = mcolors.LinearSegmentedColormap.from_list('black', ['#000000', '#000000']) | |
# Generate legends based on plot type | |
custom_html = "" | |
legend_css = "" | |
if HAS_LEGEND_BUILDERS: | |
if treat_as_categorical_checkbox and has_multiple_queries: | |
# Create categorical legend for multiple queries | |
unique_queries = sorted(records_df['query_index'].unique()) | |
color_mapping = {} | |
# Get readable names for each query URL | |
for i, query_idx in enumerate(unique_queries): | |
try: | |
if query_idx < len(urls): | |
readable_name = openalex_url_to_readable_name(urls[query_idx]) | |
# Truncate long names for legend display | |
if len(readable_name) > 25: | |
readable_name = readable_name[:22] + "..." | |
else: | |
readable_name = f"Query {query_idx + 1}" | |
except Exception: | |
readable_name = f"Query {query_idx + 1}" | |
color_mapping[readable_name] = query_color_map[query_idx] | |
legend_html, legend_css = categorical_legend_html_css( | |
color_mapping, | |
title="Queries" if len(color_mapping) > 1 else "Query", | |
anchor="top-left", | |
container_id="dmp-query-legend" | |
) | |
custom_html += legend_html | |
elif plot_time_checkbox and 'years_for_legend' in locals(): | |
# Create continuous legend for time-based coloring using the stored variables | |
# Create ticks every 5 years within the range, ignoring endpoints | |
year_min, year_max = int(years_for_legend.min()), int(years_for_legend.max()) | |
year_range = year_max - year_min | |
# Find the first multiple of 5 that's greater than year_min | |
first_tick = ((year_min // 5) + 1) * 5 | |
# Generate ticks every 5 years until we reach year_max | |
ticks = [] | |
current_tick = first_tick | |
while current_tick < year_max: | |
ticks.append(current_tick) | |
current_tick += 5 | |
# For ranges under 15 years, include both endpoints | |
if year_range < 15: | |
if not ticks: | |
# No 5-year ticks, just show endpoints | |
ticks = [year_min, year_max] | |
else: | |
# Add endpoints to existing 5-year ticks | |
if year_min not in ticks: | |
ticks.insert(0, year_min) | |
if year_max not in ticks: | |
ticks.append(year_max) | |
legend_html, legend_css = continuous_legend_html_css( | |
legend_cmap, | |
year_min, | |
year_max, | |
ticks=ticks, | |
label=legend_label, | |
anchor="top-right", | |
container_id="dmp-year-legend" | |
) | |
custom_html += legend_html | |
# Add custom CSS to make legend titles equally large and bold | |
legend_title_css = """ | |
/* Make all legend titles equally large and bold */ | |
#dmp-query-legend .legend-title, | |
#dmp-year-legend .colorbar-label { | |
font-size: 16px !important; | |
font-weight: bold !important; | |
font-family: 'Roboto Condensed', sans-serif !important; | |
} | |
""" | |
# Combine legend CSS with existing custom CSS | |
combined_css = DATAMAP_CUSTOM_CSS + "\n" + legend_css + "\n" + legend_title_css | |
plot = datamapplot.create_interactive_plot( | |
stacked_df[['x','y']].values, | |
np.array(stacked_df['cluster_2_labels']), | |
np.array(['Unlabelled' if pd.isna(x) else x for x in stacked_df['parsed_field']]), | |
hover_text=[str(row['title']) for ix, row in stacked_df.iterrows()], | |
marker_color_array=stacked_df['color'], | |
marker_size_array=marker_sizes, | |
use_medoids=True, # Switch back once efficient mediod caclulation comes out! | |
width=1000, | |
height=1000, | |
# point_size_scale=1.5, | |
point_radius_min_pixels=1, | |
text_outline_width=5, | |
point_hover_color=highlight_color, | |
point_radius_max_pixels=5, | |
cmap=black_cmap, | |
background_image=graph_file_name if citation_graph_checkbox else None, | |
#color_label_text=False, | |
font_family="Roboto Condensed", | |
font_weight=600, | |
tooltip_font_weight=600, | |
tooltip_font_family="Roboto Condensed", | |
extra_point_data=extra_data, | |
on_click="window.open(`{doi}`)", | |
custom_html=custom_html, | |
custom_css=combined_css, | |
initial_zoom_fraction=.8, | |
enable_search=False, | |
offline_mode=False | |
) | |
# Save plot | |
plot.save(html_file_path) | |
print(f"Plot created and saved in {time.time() - plot_start:.2f} seconds") | |
# Save additional files if requested | |
if download_csv_checkbox: | |
# Export relevant column | |
export_df = records_df[['title', 'abstract', 'doi', 'publication_year', 'x', 'y','id','primary_topic']] | |
export_df['parsed_field'] = [get_field(row) for ix, row in export_df.iterrows()] | |
export_df['referenced_works'] = [', '.join(x) for x in records_df['referenced_works']] | |
# Add query information if categorical coloring is used | |
if treat_as_categorical_checkbox and has_multiple_queries: | |
export_df['query_index'] = records_df['query_index'] | |
export_df['query_label'] = records_df['query_label'] | |
if locally_approximate_publication_date_checkbox and plot_type_dropdown == "Time-based coloring" and 'years_for_legend' in locals(): | |
export_df['approximate_publication_year'] = years_for_legend | |
export_df.to_csv(csv_file_path, index=False) | |
if download_png_checkbox: | |
png_start_time = time.time() | |
print("Starting PNG generation...") | |
# Sample and prepare data | |
sample_prep_start = time.time() | |
sample_to_plot = basedata_df#.sample(20000) | |
labels1 = np.array(sample_to_plot['cluster_2_labels']) | |
labels2 = np.array(['Unlabelled' if pd.isna(x) else x for x in sample_to_plot['parsed_field']]) | |
ratio = 0.6 | |
mask = np.random.random(size=len(labels1)) < ratio | |
combined_labels = np.where(mask, labels1, labels2) | |
# Get the 30 most common labels | |
unique_labels, counts = np.unique(combined_labels, return_counts=True) | |
top_30_labels = set(unique_labels[np.argsort(counts)[-80:]]) | |
# Replace less common labels with 'Unlabelled' | |
combined_labels = np.array(['Unlabelled' if label not in top_30_labels else label for label in combined_labels]) | |
colors_base = ['#536878' for _ in range(len(labels1))] | |
print(f"Sample preparation completed in {time.time() - sample_prep_start:.2f} seconds") | |
# Create main plot | |
main_plot_start = time.time() | |
fig, ax = datamapplot.create_plot( | |
sample_to_plot[['x','y']].values, | |
combined_labels, | |
label_wrap_width=12, | |
label_over_points=True, | |
dynamic_label_size=True, | |
use_medoids=True, # Switch back once efficient mediod caclulation comes out! | |
point_size=2, | |
marker_color_array=colors_base, | |
force_matplotlib=True, | |
max_font_size=12, | |
min_font_size=4, | |
min_font_weight=100, | |
max_font_weight=300, | |
font_family="Roboto Condensed", | |
color_label_text=False, add_glow=False, | |
highlight_labels=list(np.unique(labels1)), | |
label_font_size=8, | |
highlight_label_keywords={"fontsize": 12, "fontweight": "bold", "bbox":{"boxstyle":"circle", "pad":0.75,'alpha':0.}}, | |
) | |
print(f"Main plot creation completed in {time.time() - main_plot_start:.2f} seconds") | |
if citation_graph_checkbox: | |
# Read and add the graph image | |
graph_img = plt.imread(graph_file_path) | |
ax.imshow(graph_img, extent=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])], | |
alpha=0.9, aspect='auto') | |
if len(records_df) > 50_000: | |
point_size = .5 | |
elif len(records_df) > 10_000: | |
point_size = 1 | |
else: | |
point_size = 5 | |
# Time-based visualization | |
scatter_start = time.time() | |
if plot_type_dropdown == "Time-based coloring": | |
# Use selected colormap if provided, otherwise default to haline | |
if selected_colormap_name and selected_colormap_name.strip(): | |
try: | |
static_cmap = plt.get_cmap(selected_colormap_name) | |
except Exception as e: | |
print(f"Warning: Could not load colormap '{selected_colormap_name}': {e}") | |
static_cmap = colormaps.haline | |
else: | |
static_cmap = colormaps.haline | |
if locally_approximate_publication_date_checkbox and 'years_for_legend' in locals(): | |
scatter = plt.scatter( | |
umap_embeddings[:,0], | |
umap_embeddings[:,1], | |
c=years_for_legend, | |
cmap=static_cmap, | |
alpha=0.8, | |
s=point_size | |
) | |
else: | |
years = pd.to_numeric(records_df['publication_year']) | |
scatter = plt.scatter( | |
umap_embeddings[:,0], | |
umap_embeddings[:,1], | |
c=years, | |
cmap=static_cmap, | |
alpha=0.8, | |
s=point_size | |
) | |
plt.colorbar(scatter, shrink=0.5, format='%d') | |
else: | |
scatter = plt.scatter( | |
umap_embeddings[:,0], | |
umap_embeddings[:,1], | |
c=records_df['color'], | |
alpha=0.8, | |
s=point_size | |
) | |
print(f"Scatter plot creation completed in {time.time() - scatter_start:.2f} seconds") | |
# Save plot | |
save_start = time.time() | |
plt.axis('off') | |
plt.savefig(png_file_path, dpi=300, bbox_inches='tight') | |
plt.close() | |
print(f"Plot saving completed in {time.time() - save_start:.2f} seconds") | |
print(f"Total PNG generation completed in {time.time() - png_start_time:.2f} seconds") | |
progress(1.0, desc="Done!") | |
print(f"Total pipeline completed in {time.time() - start_time:.2f} seconds") | |
iframe = f"""<iframe src="{html_file_path}" width="100%" height="1000px"></iframe>""" | |
# Return iframe and download buttons with appropriate visibility | |
return [ | |
iframe, | |
gr.DownloadButton(label="Download Interactive Visualization", value=html_file_path, visible=True, variant='secondary'), | |
gr.DownloadButton(label="Download CSV Data", value=csv_file_path, visible=download_csv_checkbox, variant='secondary'), | |
gr.DownloadButton(label="Download Static Plot", value=png_file_path, visible=download_png_checkbox, variant='secondary'), | |
gr.Button(visible=False) # Return hidden state for cancel button | |
] | |
predict.zerogpu = True | |
theme = gr.themes.Monochrome( | |
font=[gr.themes.GoogleFont("Roboto Condensed"), "ui-sans-serif", "system-ui", "sans-serif"], | |
text_size="lg", | |
).set( | |
button_secondary_background_fill="white", | |
button_secondary_background_fill_hover="#f3f4f6", | |
button_secondary_border_color="black", | |
button_secondary_text_color="black", | |
button_border_width="2px", | |
) | |
# JS to enforce light theme by refreshing the page | |
js_light = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'light') { | |
url.searchParams.set('__theme', 'light'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
# Gradio interface setup | |
with gr.Blocks(theme=theme, css=f""" | |
.gradio-container a {{ | |
color: black !important; | |
text-decoration: none !important; /* Force remove default underline */ | |
font-weight: bold; | |
transition: color 0.2s ease-in-out, border-bottom-color 0.2s ease-in-out; | |
display: inline-block; /* Enable proper spacing for descenders */ | |
line-height: 1.1; /* Adjust line height */ | |
padding-bottom: 2px; /* Add space for descenders */ | |
}} | |
.gradio-container a:hover {{ | |
color: #b23310 !important; | |
border-bottom: 3px solid #b23310; /* Wider underline, only on hover */ | |
}} | |
/* Colormap chooser styles */ | |
{colormap_chooser.css()} | |
""", js=js_light) as demo: | |
gr.Markdown(""" | |
<div style="max-width: 100%; margin: 0 auto;"> | |
<br> | |
# OpenAlex Mapper | |
OpenAlex Mapper is a way of projecting search queries from the amazing OpenAlex database on a background map of randomly sampled papers from OpenAlex, which allows you to easily investigate interdisciplinary connections. OpenAlex Mapper was developed by [Maximilian Noichl](https://maxnoichl.eu) and [Andrea Loettgers](https://unige.academia.edu/AndreaLoettgers) at the [Possible Life project](http://www.possiblelife.eu/). | |
To use OpenAlex Mapper, first head over to [OpenAlex](https://openalex.org/) and search for something that interests you. For example, you could search for all the papers that make use of the [Kuramoto model](https://openalex.org/works?page=1&filter=default.search%3A%22Kuramoto%20Model%22), for all the papers that were published by researchers at [Utrecht University in 2019](https://openalex.org/works?page=1&filter=authorships.institutions.lineage%3Ai193662353,publication_year%3A2019), or for all the papers that cite Wittgenstein's [Philosophical Investigations](https://openalex.org/works?page=1&filter=cites%3Aw4251395411). Then you copy the URL to that search query into the OpenAlex search URL box below and click "Run Query." It will download all of these records from OpenAlex and embed them on our interactive map. As the embedding step is a little expensive, computationally, it's often a good idea to play around with smaller samples, before running a larger analysis (see below for a note on sample size and gpu-limits). After a little time, that map will appear and be available for you to interact with and download. You can find more explanations in the FAQs below. | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
run_btn = gr.Button("Run Query", variant='primary') | |
cancel_btn = gr.Button("Cancel", visible=False, variant='secondary') | |
# Create separate download buttons | |
html_download = gr.DownloadButton("Download Interactive Visualization", visible=False, variant='secondary') | |
csv_download = gr.DownloadButton("Download CSV Data", visible=False, variant='secondary') | |
png_download = gr.DownloadButton("Download Static Plot", visible=False, variant='secondary') | |
text_input = gr.Textbox(label="OpenAlex-search URL", | |
info="Enter the URL to an OpenAlex-search.") | |
# Add the query highlight display | |
query_display = gr.HTML( | |
value="<div style='padding: 10px; color: #666; font-style: italic;'>Enter OpenAlex URLs separated by semicolons to see query descriptions</div>", | |
label="", | |
show_label=False | |
) | |
gr.Markdown("### Sample Settings") | |
reduce_sample_checkbox = gr.Checkbox( | |
label="Reduce Sample Size", | |
value=True, | |
info="Reduce sample size." | |
) | |
sample_reduction_method = gr.Dropdown( | |
["All", "First n samples", "n random samples"], | |
label="Sample Selection Method", | |
value="First n samples", | |
info="How to choose the samples to keep.", | |
visible=True # Will be controlled by reduce_sample_checkbox | |
) | |
if is_running_in_hf_zero_gpu(): | |
max_sample_size = 20000 | |
else: | |
max_sample_size = 250000 | |
sample_size_slider = gr.Slider( | |
label="Sample Size", | |
minimum=500, | |
maximum=max_sample_size, | |
step=10, | |
value=1000, | |
info="How many samples to keep.", | |
visible=True # Will be controlled by reduce_sample_checkbox | |
) | |
# Add this new seed field | |
seed_textbox = gr.Textbox( | |
label="Random Seed", | |
value="42", | |
info="Seed for random sampling reproducibility.", | |
visible=False # Will be controlled by both reduce_sample_checkbox and sample_reduction_method | |
) | |
gr.Markdown("### Plot Settings") | |
# Replace plot_time_checkbox with a dropdown | |
plot_type_dropdown = gr.Dropdown( | |
["No special coloring", "Time-based coloring", "Categorical coloring"], | |
label="Plot Coloring Type", | |
value="Time-based coloring", | |
info="Choose how to color the points on the plot." | |
) | |
locally_approximate_publication_date_checkbox = gr.Checkbox( | |
label="Locally Approximate Publication Date", | |
value=True, | |
info="Colour points by the average publication date in their area.", | |
visible=True # Will be controlled by plot_type_dropdown | |
) | |
# Remove treat_as_categorical_checkbox since it's now part of the dropdown | |
gr.Markdown("### Download Options") | |
download_csv_checkbox = gr.Checkbox( | |
label="Generate CSV Export", | |
value=False, | |
info="Export the data as CSV file" | |
) | |
download_png_checkbox = gr.Checkbox( | |
label="Generate Static PNG Plot", | |
value=False, | |
info="Export a static PNG visualization. This will make things slower!" | |
) | |
gr.Markdown("### Citation graph") | |
citation_graph_checkbox = gr.Checkbox( | |
label="Add Citation Graph", | |
value=False, | |
info="Adds a citation graph of the sample to the plot." | |
) | |
gr.Markdown("### Upload Your Own Data") | |
csv_upload = gr.File( | |
file_count="single", | |
label="Upload your own CSV file downloaded via pyalex.", | |
file_types=[".csv"], | |
) | |
# --- Aesthetics Accordion --- | |
with gr.Accordion("Aesthetics", open=False): | |
gr.Markdown("### Color Selection") | |
gr.Markdown("*Choose an individual color to highlight your data.*") | |
highlight_color_picker = gr.ColorPicker( | |
label="Highlight Color", | |
show_label=False, | |
value="#5e2784", | |
#info="Choose the highlight color for your query points." | |
) | |
# Add colormap chooser | |
gr.Markdown("### Colormap Selection") | |
gr.Markdown("*Choose a colormap for time-based visualizations (when 'Plot Time' is enabled)*") | |
# Render the colormap chooser (created earlier) | |
colormap_chooser.render_tabs() | |
with gr.Column(scale=2): | |
html = gr.HTML( | |
value='<div style="width: 100%; height: 1000px; display: flex; justify-content: center; align-items: center; border: 1px solid #ccc; background-color: #f8f9fa;"><p style="font-size: 1.2em; color: #666;">The visualization map will appear here after running a query</p></div>', | |
label="", | |
show_label=False | |
) | |
gr.Markdown(""" | |
<div style="max-width: 100%; margin: 0 auto;"> | |
# FAQs | |
## Who made this? | |
This project was developed by [Maximilian Noichl](https://maxnoichl.eu) (Utrecht University), in cooperation with Andrea Loettgers and Tarja Knuuttila at the [Possible Life project](http://www.possiblelife.eu/), at the University of Vienna. If this project is useful in any way for your research, we would appreciate citation of: | |
Noichl, M., Loettgers, A., Knuuttila, T. (2025).[Philosophy at Scale: Introducing OpenAlex Mapper](https://maxnoichl.eu/full/talks/talk_BERLIN_April_2025/working_paper.pdf). *Working Paper*. | |
This project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (LIFEMODE project, grant agreement No. 818772). | |
## How does it work? | |
The base map for this project is developed by randomly downloading 250,000 articles from OpenAlex, then embedding their abstracts using our [fine-tuned](https://huggingface.co/m7n/discipline-tuned_specter_2_024) version of the [specter-2](https://huggingface.co/allenai/specter2_aug2023refresh_base) language model, running these embeddings through [UMAP](https://umap-learn.readthedocs.io/en/latest/) to give us a two-dimensional representation, and displaying that in an interactive window using [datamapplot](https://datamapplot.readthedocs.io/en/latest/index.html). After the data for your query is downloaded from OpenAlex, it then undergoes the exact same process, but the pre-trained UMAP model from earlier is used to project your new data points onto this original map, showing where they would show up if they were included in the original sample. For more details, you can take a look at the method section of this [working paper](https://maxnoichl.eu/full/talks/talk_BERLIN_April_2025/working_paper.pdf). | |
## I'm getting an "out of GPU credits" error. | |
Running the embedding process requires an expensive A100 GPU. To provide this, we make use of HuggingFace's ZeroGPU service. As an anonymous user, this entitles you to one minute of GPU runtime, which is enough for several small queries of around a thousand records every day. If you create a free account on HuggingFace, this should increase to five minutes of runtime, allowing you to run successful queries of up to 10,000 records at a time. If you need more, there's always the option to either buy a HuggingFace Pro subscription for roughly ten dollars a month (entitling you to 25 minutes of runtime every day) or get in touch with us to run the pipeline outside of the HuggingFace environment. | |
## I want to add multiple queries at once! | |
That can be a good idea, e. g. if your interested in a specific paper, as well as all the papers that cite it. Just add the queries to the query box and separate them with a ";" without any spaces in between! | |
## I think I found a mistake in the map. | |
There are various considerations to take into account when working with this map: | |
1. The language model we use is fine-tuned to separate disciplines from each other, but of course, disciplines are weird, partially subjective social categories, so what the model has learned might not always correspond perfectly to what you would expect to see. | |
2. When pressing down a really high-dimensional space into a low-dimensional one, there will be trade-offs. For example, we see this big ring structure of the sciences on the map, but in the middle of the map there is a overly stretchedstring of bioinformaticsthat stretches from computer science at the bottom up to the life sciences clusters at the top. This is one of the areas where the UMAP algorithm had trouble pressing our high-dimensional dataset into a low-dimensional space. For more information on how to read a UMAP plot, I recommend looking into ["Understanding UMAP"](https://pair-code.github.io/understanding-umap/) by Andy Coenen & Adam Pearce. | |
3. Finally, the labels we're using for the regions of this plot are created from OpenAlex's own labels of sub-disciplines. They give a rough indication of the papers that could be expected in this broad area of the map, but they are not necessarily the perfect label for the articles that are precisely below them. They are just located at the median point of a usually much larger, much broader, and fuzzier category, so they should always be taken with quite a big grain of salt. | |
## I want to use my own data! | |
Sure! You can upload csv-files produced by downloading records from OpenAlex using the pyalex package. You will need to provide at least the columns `id`, `title`, `publication_year`, `doi`, `abstract` or `abstract_inverted_index`, `referenced_works` and `primary_topic`. Alternatively, you can upload a csv-file with only the column `doi`, containing a column of DOIs. These will then be used to download the records from OpenAlex and then embed them on the map. | |
</div> | |
""") | |
# Update the visibility control functions | |
def update_sample_controls_visibility(reduce_sample_enabled, sample_method): | |
"""Update visibility of sample reduction controls based on checkbox and method""" | |
method_visible = reduce_sample_enabled | |
slider_visible = reduce_sample_enabled and sample_method != "All" | |
seed_visible = reduce_sample_enabled and sample_method == "n random samples" | |
return ( | |
gr.Dropdown(visible=method_visible), | |
gr.Slider(visible=slider_visible), | |
gr.Textbox(visible=seed_visible) | |
) | |
def update_plot_controls_visibility(plot_type): | |
"""Update visibility of plot controls based on plot type""" | |
locally_approx_visible = plot_type == "Time-based coloring" | |
return gr.Checkbox(visible=locally_approx_visible) | |
# Update event handlers | |
reduce_sample_checkbox.change( | |
fn=update_sample_controls_visibility, | |
inputs=[reduce_sample_checkbox, sample_reduction_method], | |
outputs=[sample_reduction_method, sample_size_slider, seed_textbox] | |
) | |
sample_reduction_method.change( | |
fn=update_sample_controls_visibility, | |
inputs=[reduce_sample_checkbox, sample_reduction_method], | |
outputs=[sample_reduction_method, sample_size_slider, seed_textbox] | |
) | |
plot_type_dropdown.change( | |
fn=update_plot_controls_visibility, | |
inputs=[plot_type_dropdown], | |
outputs=[locally_approximate_publication_date_checkbox] | |
) | |
def show_cancel_button(): | |
return gr.Button(visible=True) | |
def hide_cancel_button(): | |
return gr.Button(visible=False) | |
show_cancel_button.zerogpu = True | |
hide_cancel_button.zerogpu = True | |
predict.zerogpu = True | |
# Update the run button click event | |
run_event = run_btn.click( | |
fn=show_cancel_button, | |
outputs=cancel_btn, | |
queue=False | |
).then( | |
fn=predict, | |
inputs=[ | |
text_input, | |
sample_size_slider, | |
reduce_sample_checkbox, | |
sample_reduction_method, | |
plot_type_dropdown, # Changed from plot_time_checkbox | |
locally_approximate_publication_date_checkbox, | |
# Removed treat_as_categorical_checkbox since it's now part of plot_type_dropdown | |
download_csv_checkbox, | |
download_png_checkbox, | |
citation_graph_checkbox, | |
csv_upload, | |
highlight_color_picker, | |
colormap_chooser.selected_name, | |
seed_textbox | |
], | |
outputs=[html, html_download, csv_download, png_download, cancel_btn] | |
) | |
# Add cancel button click event | |
cancel_btn.click( | |
fn=hide_cancel_button, | |
outputs=cancel_btn, | |
cancels=[run_event], | |
queue=False # Important to make the button hide immediately | |
) | |
# Connect text input changes to query display updates | |
text_input.change( | |
fn=highlight_queries, | |
inputs=text_input, | |
outputs=query_display | |
) | |
# demo.static_dirs = { | |
# "static": str(static_dir) | |
# } | |
# Mount and run app | |
# app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False) | |
# app.zerogpu = True # Add this line | |
# if __name__ == "__main__": | |
# demo.launch(server_name="0.0.0.0", server_port=7860, share=True,allowed_paths=["/static"]) | |
# Mount Gradio app to FastAPI | |
if is_running_in_hf_space(): | |
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False) # setting to false for now. | |
else: | |
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False) | |
# Run both servers | |
if __name__ == "__main__": | |
if is_running_in_hf_space(): | |
# For HF Spaces, use SSR mode | |
os.environ["GRADIO_SSR_MODE"] = "True" | |
uvicorn.run("app:app", host="0.0.0.0", port=7860) | |
else: | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |