File size: 9,862 Bytes
1991049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

####################
#   Critic Model   #
####################

# Part of the code is adapted from here: https://github.com/yaohungt/Pointwise_Dependency_Neural_Estimation

def probabilistic_classifier_obj(f):
    criterion = nn.BCEWithLogitsLoss()

    batch_size = f.shape[0]
    labels = [0.]*(batch_size*batch_size)
    labels[::(batch_size+1)] = [1.]*batch_size
    labels = torch.tensor(labels).type_as(f)
    labels = labels.view(-1,1)

    logits = f.contiguous().view(-1,1)

    Loss = -1.*criterion(logits, labels)

    return Loss

def probabilistic_classifier_eval(f):
    batch_size = f.shape[0]
    joint_feat = f.contiguous().view(-1)[::(batch_size+1)]
    joint_logits = torch.clamp(torch.sigmoid(joint_feat), min=1e-6, max=1-1e-6)

    MI = torch.mean(torch.log((batch_size-1)*joint_logits/(1.-joint_logits)))
    # we have batch_size*(batch_size-1) product of marginal samples
    # we have batch_size joint density samples

    return MI

def infonce_lower_bound_obj(scores):
    nll = scores.diag().mean() - scores.logsumexp(dim=1)
    # Alternative implementation:
    # nll = -tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=tf.range(batch_size))
    mi = torch.tensor(scores.size(0)).float().log() + nll
    mi = mi.mean()
    return mi

def mlp(dim, hidden_dim, output_dim, layers, activation):
    activation = {
        'relu': nn.ReLU,
        'tanh': nn.Tanh,
    }[activation]

    seq = [nn.Linear(dim, hidden_dim), activation()]
    for _ in range(layers):
        seq += [nn.Linear(hidden_dim, hidden_dim), activation()]
    seq += [nn.Linear(hidden_dim, output_dim)]

    return nn.Sequential(*seq)

class SeparableCritic(nn.Module):
    def __init__(self, x1_dim, x2_dim, hidden_dim, embed_dim, 

                 layers, activation):
        super(SeparableCritic, self).__init__()
        self._g = mlp(x1_dim, hidden_dim, embed_dim, layers, activation)
        self._h = mlp(x2_dim, hidden_dim, embed_dim, layers, activation)

    def transformed_x(self, x):
        return self._g(x)
    
    def transformed_y(self, y):
        return self._h(y) 
    
    def forward(self, x, y):
        scores = torch.matmul(self._h(y), self._g(x).t())
        return scores
    
    def pointwise_mi(self, x, y, estimator):
        scores = torch.matmul(self._h(y), self._g(x).t())

        if estimator == 'probabilistic_classifier':
            # the prob of being a pair
            # PMI = torch.sigmoid(scores.diag())
            # PMI
            batch_size = scores.shape[0]
            # N_pxpy / N_pxy = (batch_size - 1.) * batch_size / batch_size
            PMI = scores.diag() + np.log(batch_size - 1.)
        else:
            raise NotImplementedError("not supporting our PMI!")
        return PMI

class ConcatCritic(nn.Module):

    def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs):
        super(ConcatCritic, self).__init__()
        # output is scalar score
        self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation)

    def forward(self, x, y):
        batch_size = x.shape[0]
        # Tile all possible combinations of x and y
        x_tiled = torch.stack([x] * batch_size, dim=0)
        y_tiled = torch.stack([y] * batch_size, dim=1)
        # xy is [batch_size * batch_size, x_dim + y_dim]
        xy_pairs = torch.reshape(torch.cat((x_tiled, y_tiled), dim=2), [batch_size * batch_size, -1])
        # Compute scores for each x_i, y_j pair.
        scores = self._f(xy_pairs)
        return torch.reshape(scores, [batch_size, batch_size]).t()

# Concat critic with the InfoNCE (NCE) objective
class InfoNCECritic(nn.Module):
    def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs):
          super(InfoNCECritic, self).__init__()
          # output is scalar score
          self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation)

    def forward(self, x_samples, y_samples):
        sample_size = y_samples.shape[0]
        
        #x_samples = F.normalize(x_samples, dim=-1)
        #y_samples = F.normalize(y_samples, dim=-1)

        x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))
        y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))

        T0 = self._f(torch.cat([x_samples,y_samples], dim = -1))
        T1 = self._f(torch.cat([x_tile, y_tile], dim = -1))  

        lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size)) 
        return -lower_bound

# Concat critic with the CLUBInfoNCE (NCE-CLUB) objective
class CLUBInfoNCECritic(nn.Module):
    def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs):
          super(CLUBInfoNCECritic, self).__init__()
 
          self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation)

    # CLUB loss
    def forward(self, x_samples, y_samples):
        sample_size = y_samples.shape[0]
        
        #x_samples = F.normalize(x_samples, dim=-1)
        #y_samples = F.normalize(y_samples, dim=-1)

        x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))
        y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))

        T0 = self._f(torch.cat([y_samples,x_samples], dim = -1)) 
        T1 = self._f(torch.cat([y_tile, x_tile], dim = -1))  

        return -(T0.mean() - T1.mean())

    # InfoNCE loss
    def learning_loss(self, x_samples, y_samples):
        sample_size = y_samples.shape[0]
        
        #x_samples = F.normalize(x_samples, dim=-1)
        #y_samples = F.normalize(y_samples, dim=-1)

        x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))
        y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))

        T0 = self._f(torch.cat([y_samples,x_samples], dim = -1))
        T1 = self._f(torch.cat([y_tile, x_tile], dim = -1)) 

        lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size)) 
        return -lower_bound

class SupConLoss(nn.Module):
    """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.

    It also supports the unsupervised contrastive loss in SimCLR"""
    def __init__(self, temperature=0.07, contrast_mode='all',

                 base_temperature=0.07):
        super(SupConLoss, self).__init__()
        self.temperature = temperature
        self.contrast_mode = contrast_mode
        self.base_temperature = base_temperature

    def forward(self, features, labels=None, mask=None):
        """Compute loss for model. If both `labels` and `mask` are None,

        it degenerates to SimCLR unsupervised loss:

        https://arxiv.org/pdf/2002.05709.pdf

        Args:

            features: hidden vector of shape [bsz, n_views, ...].

            labels: ground truth of shape [bsz].

            mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j

                has the same class as sample i. Can be asymmetric.

        Returns:

            A loss scalar.

        """
        device = (torch.device('cuda')
                  if features.is_cuda
                  else torch.device('cpu'))

        if len(features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(features.shape) > 3:
            features = features.view(features.shape[0], features.shape[1], -1)

        batch_size = features.shape[0]
        if labels is not None and mask is not None:
            raise ValueError('Cannot define both `labels` and `mask`')
        elif labels is None and mask is None:
            mask = torch.eye(batch_size, dtype=torch.float32).to(device)
        elif labels is not None:
            labels = labels.contiguous().view(-1, 1)
            if labels.shape[0] != batch_size:
                raise ValueError('Num of labels does not match num of features')
            mask = torch.eq(labels, labels.T).float().to(device)
        else:
            mask = mask.float().to(device)

        contrast_count = features.shape[1]
        contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
        if self.contrast_mode == 'one':
            anchor_feature = features[:, 0]
            anchor_count = 1
        elif self.contrast_mode == 'all':
            anchor_feature = contrast_feature
            anchor_count = contrast_count
        else:
            raise ValueError('Unknown mode: {}'.format(self.contrast_mode))

        # compute logits
        anchor_dot_contrast = torch.div(
            torch.matmul(anchor_feature, contrast_feature.T),
            self.temperature)
        # for numerical stability
        logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
        logits = anchor_dot_contrast - logits_max.detach()

        # tile mask
        mask = mask.repeat(anchor_count, contrast_count)
        # mask-out self-contrast cases
        logits_mask = torch.scatter(
            torch.ones_like(mask),
            1,
            torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
            0
        )
        mask = mask * logits_mask

        # compute log_prob
        exp_logits = torch.exp(logits) * logits_mask
        log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))

        # compute mean of log-likelihood over positive
        mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)

        # loss
        loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
        loss = loss.view(anchor_count, batch_size).mean()

        return loss