Spaces:
Running
on
Zero
Running
on
Zero
Luigi Piccinelli
commited on
Commit
·
1ea89dd
1
Parent(s):
6b96309
init demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +16 -0
- LICENSE +407 -0
- README.md +1 -0
- app.py +800 -0
- assets/demo/bears.jpg +0 -0
- assets/demo/berzirk.jpg +0 -0
- assets/demo/dl3dv.json +4 -0
- assets/demo/dl3dv.png +0 -0
- assets/demo/equirectangular.jpg +0 -0
- assets/demo/kitti360.json +14 -0
- assets/demo/kitti360.png +0 -0
- assets/demo/luke.webp +0 -0
- assets/demo/naruto.jpg +0 -0
- assets/demo/poorthings.jpg +0 -0
- assets/demo/scannet.jpg +0 -0
- assets/demo/scannet.json +21 -0
- assets/demo/venice.jpg +0 -0
- assets/docs/unik3d-banner.png +0 -0
- assets/docs/unik3d-teaser.png +0 -0
- configs/config_vitb.json +159 -0
- configs/config_vitl.json +159 -0
- configs/config_vits.json +159 -0
- gradio_demo.py +796 -0
- hubconf.py +29 -0
- pyproject.toml +25 -0
- requirements.txt +84 -0
- requirements_demo.txt +84 -0
- scripts/README.md +55 -0
- scripts/demo.py +150 -0
- scripts/train.py +630 -0
- unik3d/__init__.py +1 -0
- unik3d/datasets/_2d3ds.py +67 -0
- unik3d/datasets/_4dor.py +52 -0
- unik3d/datasets/__init__.py +161 -0
- unik3d/datasets/a2d2.py +78 -0
- unik3d/datasets/adt.py +68 -0
- unik3d/datasets/aimotive.py +51 -0
- unik3d/datasets/argoverse.py +73 -0
- unik3d/datasets/argoverse2.py +49 -0
- unik3d/datasets/arkit.py +49 -0
- unik3d/datasets/ase.py +66 -0
- unik3d/datasets/base_dataset.py +344 -0
- unik3d/datasets/bdd.py +82 -0
- unik3d/datasets/bedlam.py +50 -0
- unik3d/datasets/behave.py +52 -0
- unik3d/datasets/blendedmvg.py +50 -0
- unik3d/datasets/cityscape.py +78 -0
- unik3d/datasets/ddad.py +84 -0
- unik3d/datasets/deep360.py +56 -0
- unik3d/datasets/dense.py +91 -0
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**/__pycache__/
|
2 |
+
**/build/
|
3 |
+
**/dist/
|
4 |
+
**/*egg-info
|
5 |
+
.gradio/
|
6 |
+
|
7 |
+
# ignore scripts
|
8 |
+
_*.sh
|
9 |
+
__*.png
|
10 |
+
__*.jpg
|
11 |
+
__*.webp
|
12 |
+
___*.py
|
13 |
+
**/___*.py
|
14 |
+
|
15 |
+
# ignore pcds
|
16 |
+
*.ply
|
LICENSE
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Attribution-NonCommercial 4.0 International
|
2 |
+
|
3 |
+
=======================================================================
|
4 |
+
|
5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
6 |
+
does not provide legal services or legal advice. Distribution of
|
7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
8 |
+
other relationship. Creative Commons makes its licenses and related
|
9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
10 |
+
warranties regarding its licenses, any material licensed under their
|
11 |
+
terms and conditions, or any related information. Creative Commons
|
12 |
+
disclaims all liability for damages resulting from their use to the
|
13 |
+
fullest extent possible.
|
14 |
+
|
15 |
+
Using Creative Commons Public Licenses
|
16 |
+
|
17 |
+
Creative Commons public licenses provide a standard set of terms and
|
18 |
+
conditions that creators and other rights holders may use to share
|
19 |
+
original works of authorship and other material subject to copyright
|
20 |
+
and certain other rights specified in the public license below. The
|
21 |
+
following considerations are for informational purposes only, are not
|
22 |
+
exhaustive, and do not form part of our licenses.
|
23 |
+
|
24 |
+
Considerations for licensors: Our public licenses are
|
25 |
+
intended for use by those authorized to give the public
|
26 |
+
permission to use material in ways otherwise restricted by
|
27 |
+
copyright and certain other rights. Our licenses are
|
28 |
+
irrevocable. Licensors should read and understand the terms
|
29 |
+
and conditions of the license they choose before applying it.
|
30 |
+
Licensors should also secure all rights necessary before
|
31 |
+
applying our licenses so that the public can reuse the
|
32 |
+
material as expected. Licensors should clearly mark any
|
33 |
+
material not subject to the license. This includes other CC-
|
34 |
+
licensed material, or material used under an exception or
|
35 |
+
limitation to copyright. More considerations for licensors:
|
36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
37 |
+
|
38 |
+
Considerations for the public: By using one of our public
|
39 |
+
licenses, a licensor grants the public permission to use the
|
40 |
+
licensed material under specified terms and conditions. If
|
41 |
+
the licensor's permission is not necessary for any reason--for
|
42 |
+
example, because of any applicable exception or limitation to
|
43 |
+
copyright--then that use is not regulated by the license. Our
|
44 |
+
licenses grant only permissions under copyright and certain
|
45 |
+
other rights that a licensor has authority to grant. Use of
|
46 |
+
the licensed material may still be restricted for other
|
47 |
+
reasons, including because others have copyright or other
|
48 |
+
rights in the material. A licensor may make special requests,
|
49 |
+
such as asking that all changes be marked or described.
|
50 |
+
Although not required by our licenses, you are encouraged to
|
51 |
+
respect those requests where reasonable. More considerations
|
52 |
+
for the public:
|
53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
54 |
+
|
55 |
+
=======================================================================
|
56 |
+
|
57 |
+
Creative Commons Attribution-NonCommercial 4.0 International Public
|
58 |
+
License
|
59 |
+
|
60 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
61 |
+
to be bound by the terms and conditions of this Creative Commons
|
62 |
+
Attribution-NonCommercial 4.0 International Public License ("Public
|
63 |
+
License"). To the extent this Public License may be interpreted as a
|
64 |
+
contract, You are granted the Licensed Rights in consideration of Your
|
65 |
+
acceptance of these terms and conditions, and the Licensor grants You
|
66 |
+
such rights in consideration of benefits the Licensor receives from
|
67 |
+
making the Licensed Material available under these terms and
|
68 |
+
conditions.
|
69 |
+
|
70 |
+
|
71 |
+
Section 1 -- Definitions.
|
72 |
+
|
73 |
+
a. Adapted Material means material subject to Copyright and Similar
|
74 |
+
Rights that is derived from or based upon the Licensed Material
|
75 |
+
and in which the Licensed Material is translated, altered,
|
76 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
77 |
+
permission under the Copyright and Similar Rights held by the
|
78 |
+
Licensor. For purposes of this Public License, where the Licensed
|
79 |
+
Material is a musical work, performance, or sound recording,
|
80 |
+
Adapted Material is always produced where the Licensed Material is
|
81 |
+
synched in timed relation with a moving image.
|
82 |
+
|
83 |
+
b. Adapter's License means the license You apply to Your Copyright
|
84 |
+
and Similar Rights in Your contributions to Adapted Material in
|
85 |
+
accordance with the terms and conditions of this Public License.
|
86 |
+
|
87 |
+
c. Copyright and Similar Rights means copyright and/or similar rights
|
88 |
+
closely related to copyright including, without limitation,
|
89 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
90 |
+
Rights, without regard to how the rights are labeled or
|
91 |
+
categorized. For purposes of this Public License, the rights
|
92 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
93 |
+
Rights.
|
94 |
+
d. Effective Technological Measures means those measures that, in the
|
95 |
+
absence of proper authority, may not be circumvented under laws
|
96 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
97 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
98 |
+
agreements.
|
99 |
+
|
100 |
+
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
101 |
+
any other exception or limitation to Copyright and Similar Rights
|
102 |
+
that applies to Your use of the Licensed Material.
|
103 |
+
|
104 |
+
f. Licensed Material means the artistic or literary work, database,
|
105 |
+
or other material to which the Licensor applied this Public
|
106 |
+
License.
|
107 |
+
|
108 |
+
g. Licensed Rights means the rights granted to You subject to the
|
109 |
+
terms and conditions of this Public License, which are limited to
|
110 |
+
all Copyright and Similar Rights that apply to Your use of the
|
111 |
+
Licensed Material and that the Licensor has authority to license.
|
112 |
+
|
113 |
+
h. Licensor means the individual(s) or entity(ies) granting rights
|
114 |
+
under this Public License.
|
115 |
+
|
116 |
+
i. NonCommercial means not primarily intended for or directed towards
|
117 |
+
commercial advantage or monetary compensation. For purposes of
|
118 |
+
this Public License, the exchange of the Licensed Material for
|
119 |
+
other material subject to Copyright and Similar Rights by digital
|
120 |
+
file-sharing or similar means is NonCommercial provided there is
|
121 |
+
no payment of monetary compensation in connection with the
|
122 |
+
exchange.
|
123 |
+
|
124 |
+
j. Share means to provide material to the public by any means or
|
125 |
+
process that requires permission under the Licensed Rights, such
|
126 |
+
as reproduction, public display, public performance, distribution,
|
127 |
+
dissemination, communication, or importation, and to make material
|
128 |
+
available to the public including in ways that members of the
|
129 |
+
public may access the material from a place and at a time
|
130 |
+
individually chosen by them.
|
131 |
+
|
132 |
+
k. Sui Generis Database Rights means rights other than copyright
|
133 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
134 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
135 |
+
as amended and/or succeeded, as well as other essentially
|
136 |
+
equivalent rights anywhere in the world.
|
137 |
+
|
138 |
+
l. You means the individual or entity exercising the Licensed Rights
|
139 |
+
under this Public License. Your has a corresponding meaning.
|
140 |
+
|
141 |
+
|
142 |
+
Section 2 -- Scope.
|
143 |
+
|
144 |
+
a. License grant.
|
145 |
+
|
146 |
+
1. Subject to the terms and conditions of this Public License,
|
147 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
148 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
149 |
+
exercise the Licensed Rights in the Licensed Material to:
|
150 |
+
|
151 |
+
a. reproduce and Share the Licensed Material, in whole or
|
152 |
+
in part, for NonCommercial purposes only; and
|
153 |
+
|
154 |
+
b. produce, reproduce, and Share Adapted Material for
|
155 |
+
NonCommercial purposes only.
|
156 |
+
|
157 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
158 |
+
Exceptions and Limitations apply to Your use, this Public
|
159 |
+
License does not apply, and You do not need to comply with
|
160 |
+
its terms and conditions.
|
161 |
+
|
162 |
+
3. Term. The term of this Public License is specified in Section
|
163 |
+
6(a).
|
164 |
+
|
165 |
+
4. Media and formats; technical modifications allowed. The
|
166 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
167 |
+
all media and formats whether now known or hereafter created,
|
168 |
+
and to make technical modifications necessary to do so. The
|
169 |
+
Licensor waives and/or agrees not to assert any right or
|
170 |
+
authority to forbid You from making technical modifications
|
171 |
+
necessary to exercise the Licensed Rights, including
|
172 |
+
technical modifications necessary to circumvent Effective
|
173 |
+
Technological Measures. For purposes of this Public License,
|
174 |
+
simply making modifications authorized by this Section 2(a)
|
175 |
+
(4) never produces Adapted Material.
|
176 |
+
|
177 |
+
5. Downstream recipients.
|
178 |
+
|
179 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
180 |
+
recipient of the Licensed Material automatically
|
181 |
+
receives an offer from the Licensor to exercise the
|
182 |
+
Licensed Rights under the terms and conditions of this
|
183 |
+
Public License.
|
184 |
+
|
185 |
+
b. No downstream restrictions. You may not offer or impose
|
186 |
+
any additional or different terms or conditions on, or
|
187 |
+
apply any Effective Technological Measures to, the
|
188 |
+
Licensed Material if doing so restricts exercise of the
|
189 |
+
Licensed Rights by any recipient of the Licensed
|
190 |
+
Material.
|
191 |
+
|
192 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
193 |
+
may be construed as permission to assert or imply that You
|
194 |
+
are, or that Your use of the Licensed Material is, connected
|
195 |
+
with, or sponsored, endorsed, or granted official status by,
|
196 |
+
the Licensor or others designated to receive attribution as
|
197 |
+
provided in Section 3(a)(1)(A)(i).
|
198 |
+
|
199 |
+
b. Other rights.
|
200 |
+
|
201 |
+
1. Moral rights, such as the right of integrity, are not
|
202 |
+
licensed under this Public License, nor are publicity,
|
203 |
+
privacy, and/or other similar personality rights; however, to
|
204 |
+
the extent possible, the Licensor waives and/or agrees not to
|
205 |
+
assert any such rights held by the Licensor to the limited
|
206 |
+
extent necessary to allow You to exercise the Licensed
|
207 |
+
Rights, but not otherwise.
|
208 |
+
|
209 |
+
2. Patent and trademark rights are not licensed under this
|
210 |
+
Public License.
|
211 |
+
|
212 |
+
3. To the extent possible, the Licensor waives any right to
|
213 |
+
collect royalties from You for the exercise of the Licensed
|
214 |
+
Rights, whether directly or through a collecting society
|
215 |
+
under any voluntary or waivable statutory or compulsory
|
216 |
+
licensing scheme. In all other cases the Licensor expressly
|
217 |
+
reserves any right to collect such royalties, including when
|
218 |
+
the Licensed Material is used other than for NonCommercial
|
219 |
+
purposes.
|
220 |
+
|
221 |
+
|
222 |
+
Section 3 -- License Conditions.
|
223 |
+
|
224 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
225 |
+
following conditions.
|
226 |
+
|
227 |
+
a. Attribution.
|
228 |
+
|
229 |
+
1. If You Share the Licensed Material (including in modified
|
230 |
+
form), You must:
|
231 |
+
|
232 |
+
a. retain the following if it is supplied by the Licensor
|
233 |
+
with the Licensed Material:
|
234 |
+
|
235 |
+
i. identification of the creator(s) of the Licensed
|
236 |
+
Material and any others designated to receive
|
237 |
+
attribution, in any reasonable manner requested by
|
238 |
+
the Licensor (including by pseudonym if
|
239 |
+
designated);
|
240 |
+
|
241 |
+
ii. a copyright notice;
|
242 |
+
|
243 |
+
iii. a notice that refers to this Public License;
|
244 |
+
|
245 |
+
iv. a notice that refers to the disclaimer of
|
246 |
+
warranties;
|
247 |
+
|
248 |
+
v. a URI or hyperlink to the Licensed Material to the
|
249 |
+
extent reasonably practicable;
|
250 |
+
|
251 |
+
b. indicate if You modified the Licensed Material and
|
252 |
+
retain an indication of any previous modifications; and
|
253 |
+
|
254 |
+
c. indicate the Licensed Material is licensed under this
|
255 |
+
Public License, and include the text of, or the URI or
|
256 |
+
hyperlink to, this Public License.
|
257 |
+
|
258 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
259 |
+
reasonable manner based on the medium, means, and context in
|
260 |
+
which You Share the Licensed Material. For example, it may be
|
261 |
+
reasonable to satisfy the conditions by providing a URI or
|
262 |
+
hyperlink to a resource that includes the required
|
263 |
+
information.
|
264 |
+
|
265 |
+
3. If requested by the Licensor, You must remove any of the
|
266 |
+
information required by Section 3(a)(1)(A) to the extent
|
267 |
+
reasonably practicable.
|
268 |
+
|
269 |
+
4. If You Share Adapted Material You produce, the Adapter's
|
270 |
+
License You apply must not prevent recipients of the Adapted
|
271 |
+
Material from complying with this Public License.
|
272 |
+
|
273 |
+
|
274 |
+
Section 4 -- Sui Generis Database Rights.
|
275 |
+
|
276 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
277 |
+
apply to Your use of the Licensed Material:
|
278 |
+
|
279 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
280 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
281 |
+
portion of the contents of the database for NonCommercial purposes
|
282 |
+
only;
|
283 |
+
|
284 |
+
b. if You include all or a substantial portion of the database
|
285 |
+
contents in a database in which You have Sui Generis Database
|
286 |
+
Rights, then the database in which You have Sui Generis Database
|
287 |
+
Rights (but not its individual contents) is Adapted Material; and
|
288 |
+
|
289 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
290 |
+
all or a substantial portion of the contents of the database.
|
291 |
+
|
292 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
293 |
+
replace Your obligations under this Public License where the Licensed
|
294 |
+
Rights include other Copyright and Similar Rights.
|
295 |
+
|
296 |
+
|
297 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
298 |
+
|
299 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
300 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
301 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
302 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
303 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
304 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
305 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
306 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
307 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
308 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
309 |
+
|
310 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
311 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
312 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
313 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
314 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
315 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
316 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
317 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
318 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
319 |
+
|
320 |
+
c. The disclaimer of warranties and limitation of liability provided
|
321 |
+
above shall be interpreted in a manner that, to the extent
|
322 |
+
possible, most closely approximates an absolute disclaimer and
|
323 |
+
waiver of all liability.
|
324 |
+
|
325 |
+
|
326 |
+
Section 6 -- Term and Termination.
|
327 |
+
|
328 |
+
a. This Public License applies for the term of the Copyright and
|
329 |
+
Similar Rights licensed here. However, if You fail to comply with
|
330 |
+
this Public License, then Your rights under this Public License
|
331 |
+
terminate automatically.
|
332 |
+
|
333 |
+
b. Where Your right to use the Licensed Material has terminated under
|
334 |
+
Section 6(a), it reinstates:
|
335 |
+
|
336 |
+
1. automatically as of the date the violation is cured, provided
|
337 |
+
it is cured within 30 days of Your discovery of the
|
338 |
+
violation; or
|
339 |
+
|
340 |
+
2. upon express reinstatement by the Licensor.
|
341 |
+
|
342 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
343 |
+
right the Licensor may have to seek remedies for Your violations
|
344 |
+
of this Public License.
|
345 |
+
|
346 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
347 |
+
Licensed Material under separate terms or conditions or stop
|
348 |
+
distributing the Licensed Material at any time; however, doing so
|
349 |
+
will not terminate this Public License.
|
350 |
+
|
351 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
352 |
+
License.
|
353 |
+
|
354 |
+
|
355 |
+
Section 7 -- Other Terms and Conditions.
|
356 |
+
|
357 |
+
a. The Licensor shall not be bound by any additional or different
|
358 |
+
terms or conditions communicated by You unless expressly agreed.
|
359 |
+
|
360 |
+
b. Any arrangements, understandings, or agreements regarding the
|
361 |
+
Licensed Material not stated herein are separate from and
|
362 |
+
independent of the terms and conditions of this Public License.
|
363 |
+
|
364 |
+
|
365 |
+
Section 8 -- Interpretation.
|
366 |
+
|
367 |
+
a. For the avoidance of doubt, this Public License does not, and
|
368 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
369 |
+
conditions on any use of the Licensed Material that could lawfully
|
370 |
+
be made without permission under this Public License.
|
371 |
+
|
372 |
+
b. To the extent possible, if any provision of this Public License is
|
373 |
+
deemed unenforceable, it shall be automatically reformed to the
|
374 |
+
minimum extent necessary to make it enforceable. If the provision
|
375 |
+
cannot be reformed, it shall be severed from this Public License
|
376 |
+
without affecting the enforceability of the remaining terms and
|
377 |
+
conditions.
|
378 |
+
|
379 |
+
c. No term or condition of this Public License will be waived and no
|
380 |
+
failure to comply consented to unless expressly agreed to by the
|
381 |
+
Licensor.
|
382 |
+
|
383 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
384 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
385 |
+
that apply to the Licensor or You, including from the legal
|
386 |
+
processes of any jurisdiction or authority.
|
387 |
+
|
388 |
+
=======================================================================
|
389 |
+
|
390 |
+
Creative Commons is not a party to its public
|
391 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
392 |
+
its public licenses to material it publishes and in those instances
|
393 |
+
will be considered the “Licensor.” The text of the Creative Commons
|
394 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
395 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
396 |
+
material is shared under a Creative Commons public license or as
|
397 |
+
otherwise permitted by the Creative Commons policies published at
|
398 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
399 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
400 |
+
of Creative Commons without its prior written consent including,
|
401 |
+
without limitation, in connection with any unauthorized modifications
|
402 |
+
to any of its public licenses or any other arrangements,
|
403 |
+
understandings, or agreements concerning use of licensed material. For
|
404 |
+
the avoidance of doubt, this paragraph does not form part of the
|
405 |
+
public licenses.
|
406 |
+
|
407 |
+
Creative Commons may be contacted at creativecommons.org.
|
README.md
CHANGED
@@ -8,6 +8,7 @@ sdk_version: 5.22.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
11 |
+
short_description: UniK3D (CVPR 2025)
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import time
|
5 |
+
from datetime import datetime
|
6 |
+
from math import pi
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import trimesh
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
sys.path.append("unik3d/")
|
17 |
+
|
18 |
+
from unik3d.models import UniK3D
|
19 |
+
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
20 |
+
from unik3d.utils.visualization import colorize
|
21 |
+
|
22 |
+
|
23 |
+
def predictions_to_glb(
|
24 |
+
predictions,
|
25 |
+
mask_black_bg=False,
|
26 |
+
mask_far_points=False,
|
27 |
+
) -> trimesh.Scene:
|
28 |
+
print("Building GLB scene")
|
29 |
+
images = predictions["image"].squeeze().permute(1, 2, 0).cpu().numpy()
|
30 |
+
world_points = predictions["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
31 |
+
|
32 |
+
vertices_3d = world_points.reshape(-1, 3)
|
33 |
+
# flip x and y
|
34 |
+
vertices_3d[:, 1] *= -1
|
35 |
+
vertices_3d[:, 0] *= -1
|
36 |
+
colors_rgb = (images.reshape(-1, 3)).astype(np.uint8)
|
37 |
+
|
38 |
+
if mask_black_bg:
|
39 |
+
black_bg_mask = colors_rgb.sum(axis=1) >= 16
|
40 |
+
vertices_3d = vertices_3d[black_bg_mask]
|
41 |
+
colors_rgb = colors_rgb[black_bg_mask]
|
42 |
+
|
43 |
+
if mask_far_points:
|
44 |
+
far_points_mask = np.linalg.norm(vertices_3d, axis=-1) < 100.0
|
45 |
+
vertices_3d = vertices_3d[far_points_mask]
|
46 |
+
colors_rgb = colors_rgb[far_points_mask]
|
47 |
+
|
48 |
+
scene_3d = trimesh.Scene()
|
49 |
+
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
|
50 |
+
scene_3d.add_geometry(point_cloud_data)
|
51 |
+
|
52 |
+
return scene_3d
|
53 |
+
|
54 |
+
|
55 |
+
def instantiate_model(model_name):
|
56 |
+
type_ = model_name[0].lower()
|
57 |
+
|
58 |
+
name = f"unik3d-vit{type_}"
|
59 |
+
model = UniK3D.from_pretrained(f"lpiccinelli/{name}")
|
60 |
+
|
61 |
+
# Set resolution level and interpolation mode as specified.
|
62 |
+
model.resolution_level = 9
|
63 |
+
model.interpolation_mode = "bilinear"
|
64 |
+
|
65 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
model = model.to(device).eval()
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
def instantiate_camera(camera_name, params, device):
|
71 |
+
if camera_name == "Predicted":
|
72 |
+
return None
|
73 |
+
fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov, H, W = params
|
74 |
+
if camera_name == "Pinhole":
|
75 |
+
params = [fx, fy, cx, cy]
|
76 |
+
elif camera_name == "Fisheye624":
|
77 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
|
78 |
+
elif camera_name == "OPENCV":
|
79 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
|
80 |
+
elif camera_name == "Equirectangular":
|
81 |
+
# dummy intrinsics for spherical camera, assume hfov -> vfov based on input shapes
|
82 |
+
hfov2 = hfov * pi / 180.0 / 2
|
83 |
+
params = [fx, fy, cx, cy, W, H, hfov2, H / W * hfov2]
|
84 |
+
camera_name = "Spherical"
|
85 |
+
|
86 |
+
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
87 |
+
|
88 |
+
|
89 |
+
def run_model(target_dir, model_name, camera_name, params):
|
90 |
+
|
91 |
+
print("Instantiating model and camera...")
|
92 |
+
model = instantiate_model(model_name)
|
93 |
+
|
94 |
+
image_names = [x for x in os.listdir(target_dir) if x.endswith(".png")]
|
95 |
+
input_image = np.array(Image.open(os.path.join(target_dir, image_names[-1])))
|
96 |
+
image_tensor = torch.from_numpy(input_image).permute(2, 0, 1).unsqueeze(0).float()
|
97 |
+
device = next(model.parameters()).device
|
98 |
+
image_tensor = image_tensor.to(device)
|
99 |
+
H, W = image_tensor.shape[-2:]
|
100 |
+
params = params + [H, W]
|
101 |
+
camera = instantiate_camera(camera_name, params=params, device=device)
|
102 |
+
|
103 |
+
# Perform inference with the model.
|
104 |
+
print("Running inference...")
|
105 |
+
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
106 |
+
outputs["image"] = image_tensor
|
107 |
+
|
108 |
+
return outputs
|
109 |
+
|
110 |
+
|
111 |
+
def gradio_demo(
|
112 |
+
target_dir,
|
113 |
+
model_name,
|
114 |
+
camera_name,
|
115 |
+
fx,
|
116 |
+
fy,
|
117 |
+
cx,
|
118 |
+
cy,
|
119 |
+
k1,
|
120 |
+
k2,
|
121 |
+
k3,
|
122 |
+
k4,
|
123 |
+
k5,
|
124 |
+
k6,
|
125 |
+
t1,
|
126 |
+
t2,
|
127 |
+
hfov,
|
128 |
+
mask_black_bg,
|
129 |
+
mask_far_points,
|
130 |
+
):
|
131 |
+
print(target_dir)
|
132 |
+
if not os.path.isdir(target_dir) or target_dir == "None":
|
133 |
+
return None, "No valid target directory found. Please upload first.", None
|
134 |
+
|
135 |
+
start_time = time.time()
|
136 |
+
gc.collect()
|
137 |
+
|
138 |
+
print("Running run_model...")
|
139 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
140 |
+
with torch.no_grad():
|
141 |
+
outputs = run_model(target_dir, model_name, camera_name, params)
|
142 |
+
|
143 |
+
# Save predictions
|
144 |
+
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
145 |
+
rgb = outputs["image"].squeeze().permute(1, 2, 0).cpu().numpy()
|
146 |
+
|
147 |
+
prediction_save_path = os.path.join(target_dir, "predictions.npz")
|
148 |
+
np.savez(prediction_save_path, {"points": points, "image": rgb})
|
149 |
+
|
150 |
+
# Build a GLB file name
|
151 |
+
glbfile = os.path.join(
|
152 |
+
target_dir,
|
153 |
+
f"glbscene.glb",
|
154 |
+
)
|
155 |
+
|
156 |
+
# Convert predictions to GLB
|
157 |
+
glbscene = predictions_to_glb(
|
158 |
+
outputs,
|
159 |
+
mask_black_bg=mask_black_bg,
|
160 |
+
mask_far_points=mask_far_points,
|
161 |
+
)
|
162 |
+
glbscene.export(file_obj=glbfile)
|
163 |
+
|
164 |
+
# Cleanup
|
165 |
+
del outputs
|
166 |
+
gc.collect()
|
167 |
+
|
168 |
+
end_time = time.time()
|
169 |
+
print(f"Total time: {end_time - start_time:.2f} seconds")
|
170 |
+
log_msg = f"Success. Waiting for visualization."
|
171 |
+
|
172 |
+
return glbfile, log_msg, prediction_save_path
|
173 |
+
|
174 |
+
|
175 |
+
def handle_uploads(input_image):
|
176 |
+
gc.collect()
|
177 |
+
|
178 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
179 |
+
tmpdir = os.environ.get("TMPDIR", "/tmp")
|
180 |
+
target_dir = os.path.join(tmpdir, f"input_images_{timestamp}")
|
181 |
+
|
182 |
+
if os.path.exists(target_dir):
|
183 |
+
shutil.rmtree(target_dir)
|
184 |
+
os.makedirs(target_dir)
|
185 |
+
|
186 |
+
dst_path = os.path.join(target_dir, "image.png")
|
187 |
+
Image.fromarray(input_image).save(dst_path)
|
188 |
+
image_paths = [dst_path]
|
189 |
+
|
190 |
+
print(f"Files uploaded.")
|
191 |
+
return target_dir, image_paths
|
192 |
+
|
193 |
+
|
194 |
+
def update_gallery_on_upload(input_images):
|
195 |
+
if input_images is None:
|
196 |
+
return None, None
|
197 |
+
target_dir, image_path = handle_uploads(input_images)
|
198 |
+
return target_dir, "Upload complete. Click 'Run UniK3D' to get 3D pointcloud."
|
199 |
+
|
200 |
+
|
201 |
+
def update_parameters(camera):
|
202 |
+
if camera == "Pinhole":
|
203 |
+
return (
|
204 |
+
gr.update(visible=True), # fx
|
205 |
+
gr.update(visible=True), # fy
|
206 |
+
gr.update(visible=True), # cx
|
207 |
+
gr.update(visible=True), # cy
|
208 |
+
gr.update(visible=False), # k1
|
209 |
+
gr.update(visible=False), # k2
|
210 |
+
gr.update(visible=False), # k3
|
211 |
+
gr.update(visible=False), # k4
|
212 |
+
gr.update(visible=False), # k5
|
213 |
+
gr.update(visible=False), # k6
|
214 |
+
gr.update(visible=False), # t1
|
215 |
+
gr.update(visible=False), # t2
|
216 |
+
gr.update(visible=False), # hfov
|
217 |
+
)
|
218 |
+
elif camera == "OPENCV":
|
219 |
+
return (
|
220 |
+
gr.update(visible=True), # fx
|
221 |
+
gr.update(visible=True), # fy
|
222 |
+
gr.update(visible=True), # cx
|
223 |
+
gr.update(visible=True), # cy
|
224 |
+
gr.update(visible=True), # k1
|
225 |
+
gr.update(visible=True), # k2
|
226 |
+
gr.update(visible=True), # k3
|
227 |
+
gr.update(visible=False), # k4
|
228 |
+
gr.update(visible=False), # k5
|
229 |
+
gr.update(visible=False), # k6
|
230 |
+
gr.update(visible=True), # t1
|
231 |
+
gr.update(visible=True), # t2
|
232 |
+
gr.update(visible=False), # hfov
|
233 |
+
)
|
234 |
+
elif camera == "Fisheye624":
|
235 |
+
return (
|
236 |
+
gr.update(visible=True), # fx
|
237 |
+
gr.update(visible=True), # fy
|
238 |
+
gr.update(visible=True), # cx
|
239 |
+
gr.update(visible=True), # cy
|
240 |
+
gr.update(visible=True), # k1
|
241 |
+
gr.update(visible=True), # k2
|
242 |
+
gr.update(visible=True), # k3
|
243 |
+
gr.update(visible=True), # k4
|
244 |
+
gr.update(visible=True), # k5
|
245 |
+
gr.update(visible=True), # k6
|
246 |
+
gr.update(visible=True), # t1
|
247 |
+
gr.update(visible=True), # t2
|
248 |
+
gr.update(visible=False), # hfov
|
249 |
+
)
|
250 |
+
elif camera == "Equirectangular":
|
251 |
+
return (
|
252 |
+
gr.update(visible=False), # fx
|
253 |
+
gr.update(visible=False), # fy
|
254 |
+
gr.update(visible=False), # cx
|
255 |
+
gr.update(visible=False), # cy
|
256 |
+
gr.update(visible=False), # k1
|
257 |
+
gr.update(visible=False), # k2
|
258 |
+
gr.update(visible=False), # k3
|
259 |
+
gr.update(visible=False), # k4
|
260 |
+
gr.update(visible=False), # k5
|
261 |
+
gr.update(visible=False), # k6
|
262 |
+
gr.update(visible=False), # t1
|
263 |
+
gr.update(visible=False), # t2
|
264 |
+
gr.update(visible=True), # hfov
|
265 |
+
)
|
266 |
+
elif camera == "Predicted":
|
267 |
+
return (
|
268 |
+
gr.update(visible=False), # fx
|
269 |
+
gr.update(visible=False), # fy
|
270 |
+
gr.update(visible=False), # cx
|
271 |
+
gr.update(visible=False), # cy
|
272 |
+
gr.update(visible=False), # k1
|
273 |
+
gr.update(visible=False), # k2
|
274 |
+
gr.update(visible=False), # k3
|
275 |
+
gr.update(visible=False), # k4
|
276 |
+
gr.update(visible=False), # k5
|
277 |
+
gr.update(visible=False), # k6
|
278 |
+
gr.update(visible=False), # t1
|
279 |
+
gr.update(visible=False), # t2
|
280 |
+
gr.update(visible=False), # hfov
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
raise ValueError(f"Invalid camera type: {camera}")
|
284 |
+
|
285 |
+
|
286 |
+
def clear_fields():
|
287 |
+
return None
|
288 |
+
|
289 |
+
|
290 |
+
def update_log():
|
291 |
+
return "Loading Model and Running Inference..."
|
292 |
+
|
293 |
+
|
294 |
+
def update_visualization(target_dir, mask_black_bg, mask_far_points, is_example):
|
295 |
+
|
296 |
+
if is_example == "True":
|
297 |
+
return (
|
298 |
+
None,
|
299 |
+
"No reconstruction available. Please click the Reconstruct button first.",
|
300 |
+
)
|
301 |
+
|
302 |
+
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
303 |
+
return (
|
304 |
+
None,
|
305 |
+
"No reconstruction available. Please click the Reconstruct button first.",
|
306 |
+
)
|
307 |
+
|
308 |
+
predictions_path = os.path.join(target_dir, "predictions.npz")
|
309 |
+
if not os.path.exists(predictions_path):
|
310 |
+
return (
|
311 |
+
None,
|
312 |
+
f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
|
313 |
+
)
|
314 |
+
|
315 |
+
loaded = np.load(predictions_path, allow_pickle=True)
|
316 |
+
predictions = {key: loaded[key] for key in loaded.keys()}
|
317 |
+
|
318 |
+
glbfile = os.path.join(
|
319 |
+
target_dir,
|
320 |
+
f"glbscene.glb",
|
321 |
+
)
|
322 |
+
|
323 |
+
if not os.path.exists(glbfile):
|
324 |
+
glbscene = predictions_to_glb(
|
325 |
+
predictions,
|
326 |
+
mask_black_bg=mask_black_bg,
|
327 |
+
mask_far_points=mask_far_points,
|
328 |
+
)
|
329 |
+
glbscene.export(file_obj=glbfile)
|
330 |
+
|
331 |
+
return glbfile, "Updating Visualization"
|
332 |
+
|
333 |
+
|
334 |
+
if __name__ == "__main__":
|
335 |
+
theme = gr.themes.Citrus()
|
336 |
+
theme.set(
|
337 |
+
checkbox_label_background_fill_selected="*button_primary_background_fill",
|
338 |
+
checkbox_label_text_color_selected="*button_primary_text_color",
|
339 |
+
)
|
340 |
+
|
341 |
+
with gr.Blocks(
|
342 |
+
theme=theme,
|
343 |
+
css="""
|
344 |
+
.custom-log * {
|
345 |
+
font-style: italic;
|
346 |
+
font-size: 22px !important;
|
347 |
+
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
|
348 |
+
-webkit-background-clip: text;
|
349 |
+
background-clip: text;
|
350 |
+
font-weight: bold !important;
|
351 |
+
color: transparent !important;
|
352 |
+
text-align: center !important;
|
353 |
+
}
|
354 |
+
|
355 |
+
.example-log * {
|
356 |
+
font-style: italic;
|
357 |
+
font-size: 16px !important;
|
358 |
+
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
|
359 |
+
-webkit-background-clip: text;
|
360 |
+
background-clip: text;
|
361 |
+
color: transparent !important;
|
362 |
+
}
|
363 |
+
|
364 |
+
#my_radio .wrap {
|
365 |
+
display: flex;
|
366 |
+
flex-wrap: nowrap;
|
367 |
+
justify-content: center;
|
368 |
+
align-items: center;
|
369 |
+
}
|
370 |
+
|
371 |
+
#my_radio .wrap label {
|
372 |
+
display: flex;
|
373 |
+
width: 50%;
|
374 |
+
justify-content: center;
|
375 |
+
align-items: center;
|
376 |
+
margin: 0;
|
377 |
+
padding: 10px 0;
|
378 |
+
box-sizing: border-box;
|
379 |
+
}
|
380 |
+
""",
|
381 |
+
) as demo:
|
382 |
+
|
383 |
+
# Instead of gr.State, we use a hidden Textbox:
|
384 |
+
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
385 |
+
|
386 |
+
gr.HTML(
|
387 |
+
"""
|
388 |
+
<h1>UniK3D: Universal Camera Monocular 3D Estimation</h1>
|
389 |
+
<p>
|
390 |
+
<a href="https://github.com/lpiccinelli-eth/UniK3D">🌟 GitHub Repository</a> |
|
391 |
+
<a href="">🚀 Project Page</a>
|
392 |
+
</p>
|
393 |
+
|
394 |
+
<div style="font-size: 16px; line-height: 1.5;">
|
395 |
+
<p>Upload one image to create a 3D estimation of a scene or object. UniK3D allows to predict directly 3D of any camera and scene.</p>
|
396 |
+
|
397 |
+
<h3>Getting Started:</h3>
|
398 |
+
<ol>
|
399 |
+
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
400 |
+
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
401 |
+
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
402 |
+
</ol>
|
403 |
+
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
404 |
+
</div>
|
405 |
+
"""
|
406 |
+
)
|
407 |
+
|
408 |
+
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
with gr.Column():
|
412 |
+
camera_dropdown = gr.Dropdown(
|
413 |
+
choices=[
|
414 |
+
"Predicted",
|
415 |
+
"Pinhole",
|
416 |
+
"Fisheye624",
|
417 |
+
"OPENCV",
|
418 |
+
"Equirectangular",
|
419 |
+
],
|
420 |
+
label="Input Camera",
|
421 |
+
)
|
422 |
+
model_dropdown = gr.Dropdown(
|
423 |
+
choices=["Large", "Base", "Small"], label="Utilized Model"
|
424 |
+
)
|
425 |
+
mask_black_bg = gr.Checkbox(
|
426 |
+
label="Filter Black Background", value=False
|
427 |
+
)
|
428 |
+
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
429 |
+
|
430 |
+
with gr.Column():
|
431 |
+
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
432 |
+
fy = gr.Number(label="Focal length y", value=500.0, visible=False)
|
433 |
+
cx = gr.Number(label="Center projection x", value=320.0, visible=False)
|
434 |
+
cy = gr.Number(label="Center projection y", value=240.0, visible=False)
|
435 |
+
hfov = gr.Number(
|
436 |
+
label="Horizontal FoV (degree)", value=0.0, visible=False
|
437 |
+
)
|
438 |
+
|
439 |
+
with gr.Column():
|
440 |
+
k1 = gr.Number(label="Radial 1", value=0.0, visible=False)
|
441 |
+
k2 = gr.Number(label="Radial 2", value=0.0, visible=False)
|
442 |
+
k3 = gr.Number(label="Radial 3", value=0.0, visible=False)
|
443 |
+
k4 = gr.Number(label="Radial 4", value=0.0, visible=False)
|
444 |
+
|
445 |
+
with gr.Column():
|
446 |
+
k5 = gr.Number(label="Radial 5", value=0.0, visible=False)
|
447 |
+
k6 = gr.Number(label="Radial 6", value=0.0, visible=False)
|
448 |
+
t1 = gr.Number(label="Tangential 1", value=0.0, visible=False)
|
449 |
+
t2 = gr.Number(label="Tangential 2", value=0.0, visible=False)
|
450 |
+
|
451 |
+
with gr.Row():
|
452 |
+
with gr.Column(scale=1):
|
453 |
+
input_image = gr.Image(label="Upload Images")
|
454 |
+
gr.Markdown("**3D Estimation**")
|
455 |
+
with gr.Row():
|
456 |
+
log_output = gr.Markdown(
|
457 |
+
"Please upload one image at a time, then click `Run UniK3D`.",
|
458 |
+
elem_classes=["custom-log"],
|
459 |
+
)
|
460 |
+
reconstruction_npy = gr.File(
|
461 |
+
label="Download 3D Pointcloud", type="filepath"
|
462 |
+
)
|
463 |
+
|
464 |
+
with gr.Column(scale=2):
|
465 |
+
reconstruction_output = gr.Model3D(
|
466 |
+
height=520, zoom_speed=0.5, pan_speed=0.5
|
467 |
+
)
|
468 |
+
with gr.Row():
|
469 |
+
submit_btn = gr.Button("Run UniK3D", scale=1, variant="primary")
|
470 |
+
clear_btn = gr.ClearButton(
|
471 |
+
[
|
472 |
+
input_image,
|
473 |
+
reconstruction_output,
|
474 |
+
log_output,
|
475 |
+
target_dir_output,
|
476 |
+
reconstruction_npy,
|
477 |
+
],
|
478 |
+
scale=1,
|
479 |
+
)
|
480 |
+
|
481 |
+
examples = [
|
482 |
+
[
|
483 |
+
"assets/demo/poorthings.jpg",
|
484 |
+
"Large",
|
485 |
+
"Predicted",
|
486 |
+
0.0,
|
487 |
+
0.0,
|
488 |
+
0.0,
|
489 |
+
0.0,
|
490 |
+
0.0,
|
491 |
+
0.0,
|
492 |
+
0.0,
|
493 |
+
0.0,
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0,
|
497 |
+
0.0,
|
498 |
+
0.0,
|
499 |
+
True,
|
500 |
+
False,
|
501 |
+
],
|
502 |
+
[
|
503 |
+
"assets/demo/naruto.jpg",
|
504 |
+
"Large",
|
505 |
+
"Predicted",
|
506 |
+
0.0,
|
507 |
+
0.0,
|
508 |
+
0.0,
|
509 |
+
0.0,
|
510 |
+
0.0,
|
511 |
+
0.0,
|
512 |
+
0.0,
|
513 |
+
0.0,
|
514 |
+
0.0,
|
515 |
+
0.0,
|
516 |
+
0.0,
|
517 |
+
0.0,
|
518 |
+
0.0,
|
519 |
+
False,
|
520 |
+
False,
|
521 |
+
],
|
522 |
+
[
|
523 |
+
"assets/demo/bears.jpg",
|
524 |
+
"Large",
|
525 |
+
"Predicted",
|
526 |
+
0.0,
|
527 |
+
0.0,
|
528 |
+
0.0,
|
529 |
+
0.0,
|
530 |
+
0.0,
|
531 |
+
0.0,
|
532 |
+
0.0,
|
533 |
+
0.0,
|
534 |
+
0.0,
|
535 |
+
0.0,
|
536 |
+
0.0,
|
537 |
+
0.0,
|
538 |
+
0.0,
|
539 |
+
True,
|
540 |
+
False,
|
541 |
+
],
|
542 |
+
[
|
543 |
+
"assets/demo/berzirk.jpg",
|
544 |
+
"Large",
|
545 |
+
"Predicted",
|
546 |
+
0.0,
|
547 |
+
0.0,
|
548 |
+
0.0,
|
549 |
+
0.0,
|
550 |
+
0.0,
|
551 |
+
0.0,
|
552 |
+
0.0,
|
553 |
+
0.0,
|
554 |
+
0.0,
|
555 |
+
0.0,
|
556 |
+
0.0,
|
557 |
+
0.0,
|
558 |
+
0.0,
|
559 |
+
True,
|
560 |
+
False,
|
561 |
+
],
|
562 |
+
[
|
563 |
+
"assets/demo/luke.webp",
|
564 |
+
"Large",
|
565 |
+
"Predicted",
|
566 |
+
0.0,
|
567 |
+
0.0,
|
568 |
+
0.0,
|
569 |
+
0.0,
|
570 |
+
0.0,
|
571 |
+
0.0,
|
572 |
+
0.0,
|
573 |
+
0.0,
|
574 |
+
0.0,
|
575 |
+
0.0,
|
576 |
+
0.0,
|
577 |
+
0.0,
|
578 |
+
0.0,
|
579 |
+
False,
|
580 |
+
False,
|
581 |
+
],
|
582 |
+
[
|
583 |
+
"assets/demo/equirectangular.jpg",
|
584 |
+
"Large",
|
585 |
+
"Equirectangular",
|
586 |
+
0.0,
|
587 |
+
0.0,
|
588 |
+
0.0,
|
589 |
+
0.0,
|
590 |
+
0.0,
|
591 |
+
0.0,
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
0.0,
|
595 |
+
0.0,
|
596 |
+
0.0,
|
597 |
+
0.0,
|
598 |
+
360.0,
|
599 |
+
False,
|
600 |
+
False,
|
601 |
+
],
|
602 |
+
[
|
603 |
+
"assets/demo/venice.jpg",
|
604 |
+
"Large",
|
605 |
+
"Equirectangular",
|
606 |
+
0.0,
|
607 |
+
0.0,
|
608 |
+
0.0,
|
609 |
+
0.0,
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0,
|
613 |
+
0.0,
|
614 |
+
0.0,
|
615 |
+
0.0,
|
616 |
+
0.0,
|
617 |
+
0.0,
|
618 |
+
360.0,
|
619 |
+
False,
|
620 |
+
True,
|
621 |
+
],
|
622 |
+
[
|
623 |
+
"assets/demo/dl3dv.png",
|
624 |
+
"Large",
|
625 |
+
"OPENCV",
|
626 |
+
429.57611083984375,
|
627 |
+
429.6898193359375,
|
628 |
+
479.5,
|
629 |
+
269.5,
|
630 |
+
-0.0014844092074781656,
|
631 |
+
0.0007422995404340327,
|
632 |
+
0.0,
|
633 |
+
0.0,
|
634 |
+
0.0,
|
635 |
+
0.0,
|
636 |
+
0.00012013866944471374,
|
637 |
+
0.001125041046179831,
|
638 |
+
0.0,
|
639 |
+
False,
|
640 |
+
False,
|
641 |
+
],
|
642 |
+
[
|
643 |
+
"assets/demo/scannet.jpg",
|
644 |
+
"Large",
|
645 |
+
"Fisheye624",
|
646 |
+
791.90869140625,
|
647 |
+
792.7230834960938,
|
648 |
+
878.16796875,
|
649 |
+
585.045166015625,
|
650 |
+
-0.029167557135224342,
|
651 |
+
-0.006803446915000677,
|
652 |
+
-0.0012682401575148106,
|
653 |
+
-4.6094228309812024e-05,
|
654 |
+
0.0,
|
655 |
+
0.0,
|
656 |
+
0.0,
|
657 |
+
0.0,
|
658 |
+
0.0,
|
659 |
+
False,
|
660 |
+
False,
|
661 |
+
],
|
662 |
+
]
|
663 |
+
|
664 |
+
def example_pipeline(
|
665 |
+
input_image,
|
666 |
+
model_name,
|
667 |
+
camera_name,
|
668 |
+
fx,
|
669 |
+
fy,
|
670 |
+
cx,
|
671 |
+
cy,
|
672 |
+
k1,
|
673 |
+
k2,
|
674 |
+
k3,
|
675 |
+
k4,
|
676 |
+
k5,
|
677 |
+
k6,
|
678 |
+
t1,
|
679 |
+
t2,
|
680 |
+
hfov,
|
681 |
+
mask_black_bg,
|
682 |
+
mask_far_points,
|
683 |
+
):
|
684 |
+
target_dir, image_path = handle_uploads(input_image)
|
685 |
+
glbfile, log_msg, prediction_save_path = gradio_demo(
|
686 |
+
target_dir,
|
687 |
+
model_name,
|
688 |
+
camera_name,
|
689 |
+
fx,
|
690 |
+
fy,
|
691 |
+
cx,
|
692 |
+
cy,
|
693 |
+
k1,
|
694 |
+
k2,
|
695 |
+
k3,
|
696 |
+
k4,
|
697 |
+
k5,
|
698 |
+
k6,
|
699 |
+
t1,
|
700 |
+
t2,
|
701 |
+
hfov,
|
702 |
+
mask_black_bg,
|
703 |
+
mask_far_points,
|
704 |
+
)
|
705 |
+
return (
|
706 |
+
glbfile,
|
707 |
+
log_msg,
|
708 |
+
prediction_save_path,
|
709 |
+
target_dir,
|
710 |
+
image_path,
|
711 |
+
)
|
712 |
+
|
713 |
+
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
|
714 |
+
|
715 |
+
gr.Examples(
|
716 |
+
examples=examples,
|
717 |
+
inputs=[
|
718 |
+
input_image,
|
719 |
+
model_dropdown,
|
720 |
+
camera_dropdown,
|
721 |
+
fx,
|
722 |
+
fy,
|
723 |
+
cx,
|
724 |
+
cy,
|
725 |
+
k1,
|
726 |
+
k2,
|
727 |
+
k3,
|
728 |
+
k4,
|
729 |
+
k5,
|
730 |
+
k6,
|
731 |
+
t1,
|
732 |
+
t2,
|
733 |
+
hfov,
|
734 |
+
mask_black_bg,
|
735 |
+
mask_far_points,
|
736 |
+
],
|
737 |
+
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
738 |
+
fn=example_pipeline,
|
739 |
+
cache_examples=False,
|
740 |
+
examples_per_page=50,
|
741 |
+
)
|
742 |
+
|
743 |
+
submit_btn.click(
|
744 |
+
fn=clear_fields, inputs=[], outputs=[reconstruction_output]
|
745 |
+
).then(fn=update_log, inputs=[], outputs=[log_output]).then(
|
746 |
+
fn=gradio_demo,
|
747 |
+
inputs=[
|
748 |
+
target_dir_output,
|
749 |
+
model_dropdown,
|
750 |
+
camera_dropdown,
|
751 |
+
fx,
|
752 |
+
fy,
|
753 |
+
cx,
|
754 |
+
cy,
|
755 |
+
k1,
|
756 |
+
k2,
|
757 |
+
k3,
|
758 |
+
k4,
|
759 |
+
k5,
|
760 |
+
k6,
|
761 |
+
t1,
|
762 |
+
t2,
|
763 |
+
hfov,
|
764 |
+
mask_black_bg,
|
765 |
+
mask_far_points,
|
766 |
+
],
|
767 |
+
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
768 |
+
).then(
|
769 |
+
fn=lambda: "False", inputs=[], outputs=[is_example]
|
770 |
+
)
|
771 |
+
|
772 |
+
mask_black_bg.change(
|
773 |
+
update_visualization,
|
774 |
+
[target_dir_output, mask_black_bg, mask_far_points, is_example],
|
775 |
+
[reconstruction_output, log_output],
|
776 |
+
)
|
777 |
+
|
778 |
+
mask_far_points.change(
|
779 |
+
update_visualization,
|
780 |
+
[target_dir_output, mask_black_bg, mask_far_points, is_example],
|
781 |
+
[reconstruction_output, log_output],
|
782 |
+
)
|
783 |
+
|
784 |
+
input_image.change(
|
785 |
+
fn=update_gallery_on_upload,
|
786 |
+
inputs=[input_image],
|
787 |
+
outputs=[target_dir_output, log_output],
|
788 |
+
)
|
789 |
+
|
790 |
+
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
791 |
+
camera_dropdown.change(
|
792 |
+
fn=update_parameters,
|
793 |
+
inputs=camera_dropdown,
|
794 |
+
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
795 |
+
)
|
796 |
+
|
797 |
+
# demo.queue(max_size=20).launch(show_error=True, share=False, ssr_mode=False)
|
798 |
+
demo.launch(
|
799 |
+
show_error=True,
|
800 |
+
)
|
assets/demo/bears.jpg
ADDED
![]() |
assets/demo/berzirk.jpg
ADDED
![]() |
assets/demo/dl3dv.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "OPENCV",
|
3 |
+
"params": [429.57611083984375, 429.6898193359375, 479.5, 269.5, -0.0014844092074781656, 0.0007422995404340327, 0.0, 0.0, 0.0, 0.0, 0.00012013866944471374, 0.001125041046179831, 0.0, 0.0, 0.0, 0.0]
|
4 |
+
}
|
assets/demo/dl3dv.png
ADDED
![]() |
assets/demo/equirectangular.jpg
ADDED
![]() |
assets/demo/kitti360.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"params": [
|
3 |
+
890.8814086914062,
|
4 |
+
890.5255737304688,
|
5 |
+
477.7955017089844,
|
6 |
+
470.34332275390625,
|
7 |
+
0.016798235476017,
|
8 |
+
1.6548773050308228,
|
9 |
+
0.000422239420004189,
|
10 |
+
0.000424621335696429,
|
11 |
+
2.213404655456543
|
12 |
+
],
|
13 |
+
"name": "MEI"
|
14 |
+
}
|
assets/demo/kitti360.png
ADDED
![]() |
assets/demo/luke.webp
ADDED
![]() |
assets/demo/naruto.jpg
ADDED
![]() |
assets/demo/poorthings.jpg
ADDED
![]() |
assets/demo/scannet.jpg
ADDED
![]() |
assets/demo/scannet.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"params": [
|
3 |
+
791.90869140625,
|
4 |
+
792.7230834960938,
|
5 |
+
878.16796875,
|
6 |
+
585.045166015625,
|
7 |
+
-0.029167557135224342,
|
8 |
+
-0.006803446915000677,
|
9 |
+
-0.0012682401575148106,
|
10 |
+
-4.6094228309812024e-05,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
0.0,
|
14 |
+
0.0,
|
15 |
+
0.0,
|
16 |
+
0.0,
|
17 |
+
0.0,
|
18 |
+
0.0
|
19 |
+
],
|
20 |
+
"name": "Fisheye624"
|
21 |
+
}
|
assets/demo/venice.jpg
ADDED
![]() |
assets/docs/unik3d-banner.png
ADDED
![]() |
assets/docs/unik3d-teaser.png
ADDED
![]() |
configs/config_vitb.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"generic": {
|
3 |
+
"seed": 42,
|
4 |
+
"deterministic": true,
|
5 |
+
"name_page": "ufish"
|
6 |
+
},
|
7 |
+
"training": {
|
8 |
+
"n_iters": 250000,
|
9 |
+
"batch_size": 8,
|
10 |
+
"validation_interval": 2500,
|
11 |
+
"nsteps_accumulation_gradient": 4,
|
12 |
+
"lr": 5e-05,
|
13 |
+
"lr_final": 1e-06,
|
14 |
+
"lr_warmup": 1.0,
|
15 |
+
"cycle_beta": true,
|
16 |
+
"wd": 0.1,
|
17 |
+
"wd_final": 0.1,
|
18 |
+
"warmup_iters": 75000,
|
19 |
+
"ld": 1.0,
|
20 |
+
"drop_path": 0.0,
|
21 |
+
"ema": 0.9995,
|
22 |
+
"f16": "f16",
|
23 |
+
"clipping": 1.0,
|
24 |
+
"losses": {
|
25 |
+
"depth": {
|
26 |
+
"name": "Scale",
|
27 |
+
"weight": 1.0,
|
28 |
+
"fn": "l1",
|
29 |
+
"gamma": 1.0,
|
30 |
+
"alpha": 1.0,
|
31 |
+
"output_fn": "sqrt",
|
32 |
+
"input_fn": "log"
|
33 |
+
},
|
34 |
+
"camera": {
|
35 |
+
"name": "PolarRegression",
|
36 |
+
"weight": 1.0,
|
37 |
+
"gamma": 1.0,
|
38 |
+
"alpha": 1.0,
|
39 |
+
"fn": "l1",
|
40 |
+
"output_fn": "sqrt",
|
41 |
+
"input_fn": "linear",
|
42 |
+
"dims": [
|
43 |
+
1,
|
44 |
+
2
|
45 |
+
],
|
46 |
+
"polar_weight": 3.0,
|
47 |
+
"polar_asym": 0.7
|
48 |
+
},
|
49 |
+
"confidence": {
|
50 |
+
"name": "Confidence",
|
51 |
+
"weight": 0.1,
|
52 |
+
"input_fn": "log",
|
53 |
+
"output_fn": "sqrt"
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"data": {
|
58 |
+
"image_shape": [
|
59 |
+
518,
|
60 |
+
518
|
61 |
+
],
|
62 |
+
"resize_method": "contextcrop",
|
63 |
+
"normalization": "imagenet",
|
64 |
+
"pair": 1,
|
65 |
+
"mini": 1.0,
|
66 |
+
"num_frames": 1,
|
67 |
+
"sampling": {
|
68 |
+
"KITTI": 1.0
|
69 |
+
},
|
70 |
+
"train_datasets": [
|
71 |
+
"KITTI"
|
72 |
+
],
|
73 |
+
"val_datasets": [
|
74 |
+
"KITTI"
|
75 |
+
],
|
76 |
+
"data_root": "datasets",
|
77 |
+
"crop": "garg",
|
78 |
+
"augmentations": {
|
79 |
+
"random_scale": 4.0,
|
80 |
+
"random_translate_x": 0.04,
|
81 |
+
"random_translate_y": 0.01,
|
82 |
+
"scale_p": 0.0,
|
83 |
+
"translate_p": 0.0,
|
84 |
+
"random_rotation": 0.0,
|
85 |
+
"rotation_p": 0.0,
|
86 |
+
"random_shear": 0.0,
|
87 |
+
"affine_p": 0.0,
|
88 |
+
"random_jitter": 0.5,
|
89 |
+
"jitter_p": 1.0,
|
90 |
+
"random_blur": 2.0,
|
91 |
+
"blur_p": 0.5,
|
92 |
+
"random_gamma": 0.5,
|
93 |
+
"gamma_p": 1.0,
|
94 |
+
"grayscale_p": 0.2,
|
95 |
+
"flip_p": 0.5,
|
96 |
+
"cut_p": 0.0,
|
97 |
+
"invert_p": 0.0,
|
98 |
+
"shape_mult": 14,
|
99 |
+
"noise_pad": 1.0,
|
100 |
+
"test_context": 1.0
|
101 |
+
},
|
102 |
+
"shape_constraints": {
|
103 |
+
"ratio_bounds": [
|
104 |
+
0.5,
|
105 |
+
2.5
|
106 |
+
],
|
107 |
+
"pixels_max": 600000.0,
|
108 |
+
"pixels_min": 200000.0,
|
109 |
+
"height_min": 15,
|
110 |
+
"width_min": 15,
|
111 |
+
"shape_mult": 14,
|
112 |
+
"sample": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"model": {
|
116 |
+
"name": "UniK3D",
|
117 |
+
"num_heads": 8,
|
118 |
+
"expansion": 4,
|
119 |
+
"num_steps": 100000,
|
120 |
+
"layer_scale": 1e-4,
|
121 |
+
"camera": {
|
122 |
+
"augment": true,
|
123 |
+
"weak_ratio": 0.9,
|
124 |
+
"tau": 50000
|
125 |
+
},
|
126 |
+
"pixel_decoder": {
|
127 |
+
"name": "Decoder",
|
128 |
+
"hidden_dim": 384,
|
129 |
+
"dropout": 0.0,
|
130 |
+
"depths": [
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2
|
134 |
+
],
|
135 |
+
"detach": 0.1,
|
136 |
+
"out_dim": 48,
|
137 |
+
"kernel_size": 3,
|
138 |
+
"num_prompt_blocks": 1,
|
139 |
+
"use_norm": false
|
140 |
+
},
|
141 |
+
"pixel_encoder": {
|
142 |
+
"lr": 3e-06,
|
143 |
+
"wd": 0.1,
|
144 |
+
"name": "dinov2_vitb14",
|
145 |
+
"frozen_stages": 0,
|
146 |
+
"num_register_tokens": 0,
|
147 |
+
"use_norm": true,
|
148 |
+
"freeze_norm": true,
|
149 |
+
"pretrained": null,
|
150 |
+
"stacking_fn": "last",
|
151 |
+
"output_idx": [
|
152 |
+
3,
|
153 |
+
6,
|
154 |
+
9,
|
155 |
+
12
|
156 |
+
]
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
configs/config_vitl.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"generic": {
|
3 |
+
"seed": 42,
|
4 |
+
"deterministic": true,
|
5 |
+
"name_page": "ufish"
|
6 |
+
},
|
7 |
+
"training": {
|
8 |
+
"n_iters": 250000,
|
9 |
+
"batch_size": 8,
|
10 |
+
"validation_interval": 2500,
|
11 |
+
"nsteps_accumulation_gradient": 4,
|
12 |
+
"lr": 5e-05,
|
13 |
+
"lr_final": 1e-06,
|
14 |
+
"lr_warmup": 1.0,
|
15 |
+
"cycle_beta": true,
|
16 |
+
"wd": 0.1,
|
17 |
+
"wd_final": 0.1,
|
18 |
+
"warmup_iters": 75000,
|
19 |
+
"ld": 1.0,
|
20 |
+
"drop_path": 0.0,
|
21 |
+
"ema": 0.9995,
|
22 |
+
"f16": "f16",
|
23 |
+
"clipping": 1.0,
|
24 |
+
"losses": {
|
25 |
+
"depth": {
|
26 |
+
"name": "Scale",
|
27 |
+
"weight": 1.0,
|
28 |
+
"fn": "l1",
|
29 |
+
"gamma": 1.0,
|
30 |
+
"alpha": 1.0,
|
31 |
+
"output_fn": "sqrt",
|
32 |
+
"input_fn": "log"
|
33 |
+
},
|
34 |
+
"camera": {
|
35 |
+
"name": "PolarRegression",
|
36 |
+
"weight": 1.0,
|
37 |
+
"gamma": 1.0,
|
38 |
+
"alpha": 1.0,
|
39 |
+
"fn": "l1",
|
40 |
+
"output_fn": "sqrt",
|
41 |
+
"input_fn": "linear",
|
42 |
+
"dims": [
|
43 |
+
1,
|
44 |
+
2
|
45 |
+
],
|
46 |
+
"polar_weight": 3.0,
|
47 |
+
"polar_asym": 0.7
|
48 |
+
},
|
49 |
+
"confidence": {
|
50 |
+
"name": "Confidence",
|
51 |
+
"weight": 0.1,
|
52 |
+
"input_fn": "log",
|
53 |
+
"output_fn": "sqrt"
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"data": {
|
58 |
+
"image_shape": [
|
59 |
+
518,
|
60 |
+
518
|
61 |
+
],
|
62 |
+
"resize_method": "contextcrop",
|
63 |
+
"normalization": "imagenet",
|
64 |
+
"pair": 1,
|
65 |
+
"mini": 1.0,
|
66 |
+
"num_frames": 1,
|
67 |
+
"sampling": {
|
68 |
+
"KITTI": 1.0
|
69 |
+
},
|
70 |
+
"train_datasets": [
|
71 |
+
"KITTI"
|
72 |
+
],
|
73 |
+
"val_datasets": [
|
74 |
+
"KITTI"
|
75 |
+
],
|
76 |
+
"data_root": "datasets",
|
77 |
+
"crop": "garg",
|
78 |
+
"augmentations": {
|
79 |
+
"random_scale": 4.0,
|
80 |
+
"random_translate_x": 0.04,
|
81 |
+
"random_translate_y": 0.01,
|
82 |
+
"scale_p": 0.0,
|
83 |
+
"translate_p": 0.0,
|
84 |
+
"random_rotation": 0.0,
|
85 |
+
"rotation_p": 0.0,
|
86 |
+
"random_shear": 0.0,
|
87 |
+
"affine_p": 0.0,
|
88 |
+
"random_jitter": 0.5,
|
89 |
+
"jitter_p": 1.0,
|
90 |
+
"random_blur": 2.0,
|
91 |
+
"blur_p": 0.5,
|
92 |
+
"random_gamma": 0.5,
|
93 |
+
"gamma_p": 1.0,
|
94 |
+
"grayscale_p": 0.2,
|
95 |
+
"flip_p": 0.5,
|
96 |
+
"cut_p": 0.0,
|
97 |
+
"invert_p": 0.0,
|
98 |
+
"shape_mult": 14,
|
99 |
+
"noise_pad": 1.0,
|
100 |
+
"test_context": 1.0
|
101 |
+
},
|
102 |
+
"shape_constraints": {
|
103 |
+
"ratio_bounds": [
|
104 |
+
0.5,
|
105 |
+
2.5
|
106 |
+
],
|
107 |
+
"pixels_max": 600000.0,
|
108 |
+
"pixels_min": 200000.0,
|
109 |
+
"height_min": 15,
|
110 |
+
"width_min": 15,
|
111 |
+
"shape_mult": 14,
|
112 |
+
"sample": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"model": {
|
116 |
+
"name": "UniK3D",
|
117 |
+
"num_heads": 8,
|
118 |
+
"expansion": 4,
|
119 |
+
"num_steps": 100000,
|
120 |
+
"layer_scale": 1e-4,
|
121 |
+
"camera": {
|
122 |
+
"augment": true,
|
123 |
+
"weak_ratio": 0.9,
|
124 |
+
"tau": 50000
|
125 |
+
},
|
126 |
+
"pixel_decoder": {
|
127 |
+
"name": "Decoder",
|
128 |
+
"hidden_dim": 512,
|
129 |
+
"dropout": 0.0,
|
130 |
+
"depths": [
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2
|
134 |
+
],
|
135 |
+
"detach": 0.1,
|
136 |
+
"out_dim": 64,
|
137 |
+
"kernel_size": 3,
|
138 |
+
"num_prompt_blocks": 1,
|
139 |
+
"use_norm": false
|
140 |
+
},
|
141 |
+
"pixel_encoder": {
|
142 |
+
"lr": 3e-06,
|
143 |
+
"wd": 0.1,
|
144 |
+
"name": "dinov2_vitl14",
|
145 |
+
"frozen_stages": 0,
|
146 |
+
"num_register_tokens": 0,
|
147 |
+
"use_norm": true,
|
148 |
+
"freeze_norm": true,
|
149 |
+
"pretrained": null,
|
150 |
+
"stacking_fn": "last",
|
151 |
+
"output_idx": [
|
152 |
+
6,
|
153 |
+
12,
|
154 |
+
18,
|
155 |
+
24
|
156 |
+
]
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
configs/config_vits.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"generic": {
|
3 |
+
"seed": 42,
|
4 |
+
"deterministic": true,
|
5 |
+
"name_page": "ufish"
|
6 |
+
},
|
7 |
+
"training": {
|
8 |
+
"n_iters": 250000,
|
9 |
+
"batch_size": 8,
|
10 |
+
"validation_interval": 2500,
|
11 |
+
"nsteps_accumulation_gradient": 4,
|
12 |
+
"lr": 5e-05,
|
13 |
+
"lr_final": 1e-06,
|
14 |
+
"lr_warmup": 1.0,
|
15 |
+
"cycle_beta": true,
|
16 |
+
"wd": 0.1,
|
17 |
+
"wd_final": 0.1,
|
18 |
+
"warmup_iters": 75000,
|
19 |
+
"ld": 1.0,
|
20 |
+
"drop_path": 0.0,
|
21 |
+
"ema": 0.9995,
|
22 |
+
"f16": "f16",
|
23 |
+
"clipping": 1.0,
|
24 |
+
"losses": {
|
25 |
+
"depth": {
|
26 |
+
"name": "Scale",
|
27 |
+
"weight": 1.0,
|
28 |
+
"fn": "l1",
|
29 |
+
"gamma": 1.0,
|
30 |
+
"alpha": 1.0,
|
31 |
+
"output_fn": "sqrt",
|
32 |
+
"input_fn": "log"
|
33 |
+
},
|
34 |
+
"camera": {
|
35 |
+
"name": "PolarRegression",
|
36 |
+
"weight": 1.0,
|
37 |
+
"gamma": 1.0,
|
38 |
+
"alpha": 1.0,
|
39 |
+
"fn": "l1",
|
40 |
+
"output_fn": "sqrt",
|
41 |
+
"input_fn": "linear",
|
42 |
+
"dims": [
|
43 |
+
1,
|
44 |
+
2
|
45 |
+
],
|
46 |
+
"polar_weight": 3.0,
|
47 |
+
"polar_asym": 0.7
|
48 |
+
},
|
49 |
+
"confidence": {
|
50 |
+
"name": "Confidence",
|
51 |
+
"weight": 0.1,
|
52 |
+
"input_fn": "log",
|
53 |
+
"output_fn": "sqrt"
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"data": {
|
58 |
+
"image_shape": [
|
59 |
+
518,
|
60 |
+
518
|
61 |
+
],
|
62 |
+
"resize_method": "contextcrop",
|
63 |
+
"normalization": "imagenet",
|
64 |
+
"pair": 1,
|
65 |
+
"mini": 1.0,
|
66 |
+
"num_frames": 1,
|
67 |
+
"sampling": {
|
68 |
+
"KITTI": 1.0
|
69 |
+
},
|
70 |
+
"train_datasets": [
|
71 |
+
"KITTI"
|
72 |
+
],
|
73 |
+
"val_datasets": [
|
74 |
+
"KITTI"
|
75 |
+
],
|
76 |
+
"data_root": "datasets",
|
77 |
+
"crop": "garg",
|
78 |
+
"augmentations": {
|
79 |
+
"random_scale": 4.0,
|
80 |
+
"random_translate_x": 0.04,
|
81 |
+
"random_translate_y": 0.01,
|
82 |
+
"scale_p": 0.0,
|
83 |
+
"translate_p": 0.0,
|
84 |
+
"random_rotation": 0.0,
|
85 |
+
"rotation_p": 0.0,
|
86 |
+
"random_shear": 0.0,
|
87 |
+
"affine_p": 0.0,
|
88 |
+
"random_jitter": 0.5,
|
89 |
+
"jitter_p": 1.0,
|
90 |
+
"random_blur": 2.0,
|
91 |
+
"blur_p": 0.5,
|
92 |
+
"random_gamma": 0.5,
|
93 |
+
"gamma_p": 1.0,
|
94 |
+
"grayscale_p": 0.2,
|
95 |
+
"flip_p": 0.5,
|
96 |
+
"cut_p": 0.0,
|
97 |
+
"invert_p": 0.0,
|
98 |
+
"shape_mult": 14,
|
99 |
+
"noise_pad": 1.0,
|
100 |
+
"test_context": 1.0
|
101 |
+
},
|
102 |
+
"shape_constraints": {
|
103 |
+
"ratio_bounds": [
|
104 |
+
0.5,
|
105 |
+
2.5
|
106 |
+
],
|
107 |
+
"pixels_max": 600000.0,
|
108 |
+
"pixels_min": 200000.0,
|
109 |
+
"height_min": 15,
|
110 |
+
"width_min": 15,
|
111 |
+
"shape_mult": 14,
|
112 |
+
"sample": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"model": {
|
116 |
+
"name": "UniK3D",
|
117 |
+
"num_heads": 8,
|
118 |
+
"expansion": 4,
|
119 |
+
"num_steps": 100000,
|
120 |
+
"layer_scale": 1e-4,
|
121 |
+
"camera": {
|
122 |
+
"augment": true,
|
123 |
+
"weak_ratio": 0.9,
|
124 |
+
"tau": 50000
|
125 |
+
},
|
126 |
+
"pixel_decoder": {
|
127 |
+
"name": "Decoder",
|
128 |
+
"hidden_dim": 256,
|
129 |
+
"dropout": 0.0,
|
130 |
+
"depths": [
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2
|
134 |
+
],
|
135 |
+
"detach": 0.1,
|
136 |
+
"out_dim": 32,
|
137 |
+
"kernel_size": 3,
|
138 |
+
"num_prompt_blocks": 1,
|
139 |
+
"use_norm": false
|
140 |
+
},
|
141 |
+
"pixel_encoder": {
|
142 |
+
"lr": 3e-06,
|
143 |
+
"wd": 0.1,
|
144 |
+
"name": "dinov2_vits14",
|
145 |
+
"frozen_stages": 0,
|
146 |
+
"num_register_tokens": 0,
|
147 |
+
"use_norm": true,
|
148 |
+
"freeze_norm": true,
|
149 |
+
"pretrained": null,
|
150 |
+
"stacking_fn": "last",
|
151 |
+
"output_idx": [
|
152 |
+
3,
|
153 |
+
6,
|
154 |
+
9,
|
155 |
+
12
|
156 |
+
]
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
gradio_demo.py
ADDED
@@ -0,0 +1,796 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import time
|
5 |
+
from datetime import datetime
|
6 |
+
from math import pi
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import trimesh
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from unik3d.models import UniK3D
|
15 |
+
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
16 |
+
from unik3d.utils.visualization import colorize
|
17 |
+
|
18 |
+
|
19 |
+
def predictions_to_glb(
|
20 |
+
predictions,
|
21 |
+
mask_black_bg=False,
|
22 |
+
mask_far_points=False,
|
23 |
+
) -> trimesh.Scene:
|
24 |
+
print("Building GLB scene")
|
25 |
+
images = predictions["image"].squeeze().permute(1, 2, 0).cpu().numpy()
|
26 |
+
world_points = predictions["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
27 |
+
|
28 |
+
vertices_3d = world_points.reshape(-1, 3)
|
29 |
+
# flip x and y
|
30 |
+
vertices_3d[:, 1] *= -1
|
31 |
+
vertices_3d[:, 0] *= -1
|
32 |
+
colors_rgb = (images.reshape(-1, 3)).astype(np.uint8)
|
33 |
+
|
34 |
+
if mask_black_bg:
|
35 |
+
black_bg_mask = colors_rgb.sum(axis=1) >= 16
|
36 |
+
vertices_3d = vertices_3d[black_bg_mask]
|
37 |
+
colors_rgb = colors_rgb[black_bg_mask]
|
38 |
+
|
39 |
+
if mask_far_points:
|
40 |
+
far_points_mask = np.linalg.norm(vertices_3d, axis=-1) < 100.0
|
41 |
+
vertices_3d = vertices_3d[far_points_mask]
|
42 |
+
colors_rgb = colors_rgb[far_points_mask]
|
43 |
+
|
44 |
+
scene_3d = trimesh.Scene()
|
45 |
+
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
|
46 |
+
scene_3d.add_geometry(point_cloud_data)
|
47 |
+
|
48 |
+
return scene_3d
|
49 |
+
|
50 |
+
|
51 |
+
def instantiate_model(model_name):
|
52 |
+
type_ = model_name[0].lower()
|
53 |
+
|
54 |
+
name = f"unik3d-vit{type_}"
|
55 |
+
model = UniK3D.from_pretrained(f"lpiccinelli/{name}")
|
56 |
+
|
57 |
+
# Set resolution level and interpolation mode as specified.
|
58 |
+
model.resolution_level = 9
|
59 |
+
model.interpolation_mode = "bilinear"
|
60 |
+
|
61 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
model = model.to(device).eval()
|
63 |
+
return model
|
64 |
+
|
65 |
+
|
66 |
+
def instantiate_camera(camera_name, params, device):
|
67 |
+
if camera_name == "Predicted":
|
68 |
+
return None
|
69 |
+
fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov, H, W = params
|
70 |
+
if camera_name == "Pinhole":
|
71 |
+
params = [fx, fy, cx, cy]
|
72 |
+
elif camera_name == "Fisheye624":
|
73 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
|
74 |
+
elif camera_name == "OPENCV":
|
75 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2]
|
76 |
+
elif camera_name == "Equirectangular":
|
77 |
+
# dummy intrinsics for spherical camera, assume hfov -> vfov based on input shapes
|
78 |
+
hfov2 = hfov * pi / 180.0 / 2
|
79 |
+
params = [fx, fy, cx, cy, W, H, hfov2, H / W * hfov2]
|
80 |
+
camera_name = "Spherical"
|
81 |
+
|
82 |
+
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
83 |
+
|
84 |
+
|
85 |
+
def run_model(target_dir, model_name, camera_name, params):
|
86 |
+
|
87 |
+
print("Instantiating model and camera...")
|
88 |
+
model = instantiate_model(model_name)
|
89 |
+
|
90 |
+
image_names = [x for x in os.listdir(target_dir) if x.endswith(".png")]
|
91 |
+
input_image = np.array(Image.open(os.path.join(target_dir, image_names[-1])))
|
92 |
+
image_tensor = torch.from_numpy(input_image).permute(2, 0, 1).unsqueeze(0).float()
|
93 |
+
device = next(model.parameters()).device
|
94 |
+
image_tensor = image_tensor.to(device)
|
95 |
+
H, W = image_tensor.shape[-2:]
|
96 |
+
params = params + [H, W]
|
97 |
+
camera = instantiate_camera(camera_name, params=params, device=device)
|
98 |
+
|
99 |
+
# Perform inference with the model.
|
100 |
+
print("Running inference...")
|
101 |
+
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
102 |
+
outputs["image"] = image_tensor
|
103 |
+
|
104 |
+
return outputs
|
105 |
+
|
106 |
+
|
107 |
+
def gradio_demo(
|
108 |
+
target_dir,
|
109 |
+
model_name,
|
110 |
+
camera_name,
|
111 |
+
fx,
|
112 |
+
fy,
|
113 |
+
cx,
|
114 |
+
cy,
|
115 |
+
k1,
|
116 |
+
k2,
|
117 |
+
k3,
|
118 |
+
k4,
|
119 |
+
k5,
|
120 |
+
k6,
|
121 |
+
t1,
|
122 |
+
t2,
|
123 |
+
hfov,
|
124 |
+
mask_black_bg,
|
125 |
+
mask_far_points,
|
126 |
+
):
|
127 |
+
print(target_dir)
|
128 |
+
if not os.path.isdir(target_dir) or target_dir == "None":
|
129 |
+
return None, "No valid target directory found. Please upload first.", None
|
130 |
+
|
131 |
+
start_time = time.time()
|
132 |
+
gc.collect()
|
133 |
+
|
134 |
+
print("Running run_model...")
|
135 |
+
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = run_model(target_dir, model_name, camera_name, params)
|
138 |
+
|
139 |
+
# Save predictions
|
140 |
+
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
141 |
+
rgb = outputs["image"].squeeze().permute(1, 2, 0).cpu().numpy()
|
142 |
+
|
143 |
+
prediction_save_path = os.path.join(target_dir, "predictions.npz")
|
144 |
+
np.savez(prediction_save_path, {"points": points, "image": rgb})
|
145 |
+
|
146 |
+
# Build a GLB file name
|
147 |
+
glbfile = os.path.join(
|
148 |
+
target_dir,
|
149 |
+
f"glbscene.glb",
|
150 |
+
)
|
151 |
+
|
152 |
+
# Convert predictions to GLB
|
153 |
+
glbscene = predictions_to_glb(
|
154 |
+
outputs,
|
155 |
+
mask_black_bg=mask_black_bg,
|
156 |
+
mask_far_points=mask_far_points,
|
157 |
+
)
|
158 |
+
glbscene.export(file_obj=glbfile)
|
159 |
+
|
160 |
+
# Cleanup
|
161 |
+
del outputs
|
162 |
+
gc.collect()
|
163 |
+
|
164 |
+
end_time = time.time()
|
165 |
+
print(f"Total time: {end_time - start_time:.2f} seconds")
|
166 |
+
log_msg = f"Success. Waiting for visualization."
|
167 |
+
|
168 |
+
return glbfile, log_msg, prediction_save_path
|
169 |
+
|
170 |
+
|
171 |
+
def handle_uploads(input_image):
|
172 |
+
gc.collect()
|
173 |
+
|
174 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
175 |
+
tmpdir = os.environ.get("TMPDIR", "/tmp")
|
176 |
+
target_dir = os.path.join(tmpdir, f"input_images_{timestamp}")
|
177 |
+
|
178 |
+
if os.path.exists(target_dir):
|
179 |
+
shutil.rmtree(target_dir)
|
180 |
+
os.makedirs(target_dir)
|
181 |
+
|
182 |
+
dst_path = os.path.join(target_dir, "image.png")
|
183 |
+
Image.fromarray(input_image).save(dst_path)
|
184 |
+
image_paths = [dst_path]
|
185 |
+
|
186 |
+
print(f"Files uploaded.")
|
187 |
+
return target_dir, image_paths
|
188 |
+
|
189 |
+
|
190 |
+
def update_gallery_on_upload(input_images):
|
191 |
+
if input_images is None:
|
192 |
+
return None, None
|
193 |
+
target_dir, image_path = handle_uploads(input_images)
|
194 |
+
return target_dir, "Upload complete. Click 'Run UniK3D' to get 3D pointcloud."
|
195 |
+
|
196 |
+
|
197 |
+
def update_parameters(camera):
|
198 |
+
if camera == "Pinhole":
|
199 |
+
return (
|
200 |
+
gr.update(visible=True), # fx
|
201 |
+
gr.update(visible=True), # fy
|
202 |
+
gr.update(visible=True), # cx
|
203 |
+
gr.update(visible=True), # cy
|
204 |
+
gr.update(visible=False), # k1
|
205 |
+
gr.update(visible=False), # k2
|
206 |
+
gr.update(visible=False), # k3
|
207 |
+
gr.update(visible=False), # k4
|
208 |
+
gr.update(visible=False), # k5
|
209 |
+
gr.update(visible=False), # k6
|
210 |
+
gr.update(visible=False), # t1
|
211 |
+
gr.update(visible=False), # t2
|
212 |
+
gr.update(visible=False), # hfov
|
213 |
+
)
|
214 |
+
elif camera == "OPENCV":
|
215 |
+
return (
|
216 |
+
gr.update(visible=True), # fx
|
217 |
+
gr.update(visible=True), # fy
|
218 |
+
gr.update(visible=True), # cx
|
219 |
+
gr.update(visible=True), # cy
|
220 |
+
gr.update(visible=True), # k1
|
221 |
+
gr.update(visible=True), # k2
|
222 |
+
gr.update(visible=True), # k3
|
223 |
+
gr.update(visible=False), # k4
|
224 |
+
gr.update(visible=False), # k5
|
225 |
+
gr.update(visible=False), # k6
|
226 |
+
gr.update(visible=True), # t1
|
227 |
+
gr.update(visible=True), # t2
|
228 |
+
gr.update(visible=False), # hfov
|
229 |
+
)
|
230 |
+
elif camera == "Fisheye624":
|
231 |
+
return (
|
232 |
+
gr.update(visible=True), # fx
|
233 |
+
gr.update(visible=True), # fy
|
234 |
+
gr.update(visible=True), # cx
|
235 |
+
gr.update(visible=True), # cy
|
236 |
+
gr.update(visible=True), # k1
|
237 |
+
gr.update(visible=True), # k2
|
238 |
+
gr.update(visible=True), # k3
|
239 |
+
gr.update(visible=True), # k4
|
240 |
+
gr.update(visible=True), # k5
|
241 |
+
gr.update(visible=True), # k6
|
242 |
+
gr.update(visible=True), # t1
|
243 |
+
gr.update(visible=True), # t2
|
244 |
+
gr.update(visible=False), # hfov
|
245 |
+
)
|
246 |
+
elif camera == "Equirectangular":
|
247 |
+
return (
|
248 |
+
gr.update(visible=False), # fx
|
249 |
+
gr.update(visible=False), # fy
|
250 |
+
gr.update(visible=False), # cx
|
251 |
+
gr.update(visible=False), # cy
|
252 |
+
gr.update(visible=False), # k1
|
253 |
+
gr.update(visible=False), # k2
|
254 |
+
gr.update(visible=False), # k3
|
255 |
+
gr.update(visible=False), # k4
|
256 |
+
gr.update(visible=False), # k5
|
257 |
+
gr.update(visible=False), # k6
|
258 |
+
gr.update(visible=False), # t1
|
259 |
+
gr.update(visible=False), # t2
|
260 |
+
gr.update(visible=True), # hfov
|
261 |
+
)
|
262 |
+
elif camera == "Predicted":
|
263 |
+
return (
|
264 |
+
gr.update(visible=False), # fx
|
265 |
+
gr.update(visible=False), # fy
|
266 |
+
gr.update(visible=False), # cx
|
267 |
+
gr.update(visible=False), # cy
|
268 |
+
gr.update(visible=False), # k1
|
269 |
+
gr.update(visible=False), # k2
|
270 |
+
gr.update(visible=False), # k3
|
271 |
+
gr.update(visible=False), # k4
|
272 |
+
gr.update(visible=False), # k5
|
273 |
+
gr.update(visible=False), # k6
|
274 |
+
gr.update(visible=False), # t1
|
275 |
+
gr.update(visible=False), # t2
|
276 |
+
gr.update(visible=False), # hfov
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
raise ValueError(f"Invalid camera type: {camera}")
|
280 |
+
|
281 |
+
|
282 |
+
def clear_fields():
|
283 |
+
return None
|
284 |
+
|
285 |
+
|
286 |
+
def update_log():
|
287 |
+
return "Loading Model and Running Inference..."
|
288 |
+
|
289 |
+
|
290 |
+
def update_visualization(target_dir, mask_black_bg, mask_far_points, is_example):
|
291 |
+
|
292 |
+
if is_example == "True":
|
293 |
+
return (
|
294 |
+
None,
|
295 |
+
"No reconstruction available. Please click the Reconstruct button first.",
|
296 |
+
)
|
297 |
+
|
298 |
+
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
299 |
+
return (
|
300 |
+
None,
|
301 |
+
"No reconstruction available. Please click the Reconstruct button first.",
|
302 |
+
)
|
303 |
+
|
304 |
+
predictions_path = os.path.join(target_dir, "predictions.npz")
|
305 |
+
if not os.path.exists(predictions_path):
|
306 |
+
return (
|
307 |
+
None,
|
308 |
+
f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
|
309 |
+
)
|
310 |
+
|
311 |
+
loaded = np.load(predictions_path, allow_pickle=True)
|
312 |
+
predictions = {key: loaded[key] for key in loaded.keys()}
|
313 |
+
|
314 |
+
glbfile = os.path.join(
|
315 |
+
target_dir,
|
316 |
+
f"glbscene.glb",
|
317 |
+
)
|
318 |
+
|
319 |
+
if not os.path.exists(glbfile):
|
320 |
+
glbscene = predictions_to_glb(
|
321 |
+
predictions,
|
322 |
+
mask_black_bg=mask_black_bg,
|
323 |
+
mask_far_points=mask_far_points,
|
324 |
+
)
|
325 |
+
glbscene.export(file_obj=glbfile)
|
326 |
+
|
327 |
+
return glbfile, "Updating Visualization"
|
328 |
+
|
329 |
+
|
330 |
+
if __name__ == "__main__":
|
331 |
+
theme = gr.themes.Citrus()
|
332 |
+
theme.set(
|
333 |
+
checkbox_label_background_fill_selected="*button_primary_background_fill",
|
334 |
+
checkbox_label_text_color_selected="*button_primary_text_color",
|
335 |
+
)
|
336 |
+
|
337 |
+
with gr.Blocks(
|
338 |
+
theme=theme,
|
339 |
+
css="""
|
340 |
+
.custom-log * {
|
341 |
+
font-style: italic;
|
342 |
+
font-size: 22px !important;
|
343 |
+
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
|
344 |
+
-webkit-background-clip: text;
|
345 |
+
background-clip: text;
|
346 |
+
font-weight: bold !important;
|
347 |
+
color: transparent !important;
|
348 |
+
text-align: center !important;
|
349 |
+
}
|
350 |
+
|
351 |
+
.example-log * {
|
352 |
+
font-style: italic;
|
353 |
+
font-size: 16px !important;
|
354 |
+
background-image: linear-gradient(120deg, #ff7e26 0%, #ff9c59 60%, #fff4d6 100%);
|
355 |
+
-webkit-background-clip: text;
|
356 |
+
background-clip: text;
|
357 |
+
color: transparent !important;
|
358 |
+
}
|
359 |
+
|
360 |
+
#my_radio .wrap {
|
361 |
+
display: flex;
|
362 |
+
flex-wrap: nowrap;
|
363 |
+
justify-content: center;
|
364 |
+
align-items: center;
|
365 |
+
}
|
366 |
+
|
367 |
+
#my_radio .wrap label {
|
368 |
+
display: flex;
|
369 |
+
width: 50%;
|
370 |
+
justify-content: center;
|
371 |
+
align-items: center;
|
372 |
+
margin: 0;
|
373 |
+
padding: 10px 0;
|
374 |
+
box-sizing: border-box;
|
375 |
+
}
|
376 |
+
""",
|
377 |
+
) as demo:
|
378 |
+
|
379 |
+
# Instead of gr.State, we use a hidden Textbox:
|
380 |
+
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
381 |
+
|
382 |
+
gr.HTML(
|
383 |
+
"""
|
384 |
+
<h1>UniK3D: Universal Camera Monocular 3D Estimation</h1>
|
385 |
+
<p>
|
386 |
+
<a href="https://github.com/lpiccinelli-eth/UniK3D">🌟 GitHub Repository</a> |
|
387 |
+
<a href="">🚀 Project Page</a>
|
388 |
+
</p>
|
389 |
+
|
390 |
+
<div style="font-size: 16px; line-height: 1.5;">
|
391 |
+
<p>Upload one image to create a 3D estimation of a scene or object. UniK3D allows to predict directly 3D of any camera and scene.</p>
|
392 |
+
|
393 |
+
<h3>Getting Started:</h3>
|
394 |
+
<ol>
|
395 |
+
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
396 |
+
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
397 |
+
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
398 |
+
</ol>
|
399 |
+
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
400 |
+
</div>
|
401 |
+
"""
|
402 |
+
)
|
403 |
+
|
404 |
+
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
|
405 |
+
|
406 |
+
with gr.Row():
|
407 |
+
with gr.Column():
|
408 |
+
camera_dropdown = gr.Dropdown(
|
409 |
+
choices=[
|
410 |
+
"Predicted",
|
411 |
+
"Pinhole",
|
412 |
+
"Fisheye624",
|
413 |
+
"OPENCV",
|
414 |
+
"Equirectangular",
|
415 |
+
],
|
416 |
+
label="Input Camera",
|
417 |
+
)
|
418 |
+
model_dropdown = gr.Dropdown(
|
419 |
+
choices=["Large", "Base", "Small"], label="Utilized Model"
|
420 |
+
)
|
421 |
+
mask_black_bg = gr.Checkbox(
|
422 |
+
label="Filter Black Background", value=False
|
423 |
+
)
|
424 |
+
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
425 |
+
|
426 |
+
with gr.Column():
|
427 |
+
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
428 |
+
fy = gr.Number(label="Focal length y", value=500.0, visible=False)
|
429 |
+
cx = gr.Number(label="Center projection x", value=320.0, visible=False)
|
430 |
+
cy = gr.Number(label="Center projection y", value=240.0, visible=False)
|
431 |
+
hfov = gr.Number(
|
432 |
+
label="Horizontal FoV (degree)", value=0.0, visible=False
|
433 |
+
)
|
434 |
+
|
435 |
+
with gr.Column():
|
436 |
+
k1 = gr.Number(label="Radial 1", value=0.0, visible=False)
|
437 |
+
k2 = gr.Number(label="Radial 2", value=0.0, visible=False)
|
438 |
+
k3 = gr.Number(label="Radial 3", value=0.0, visible=False)
|
439 |
+
k4 = gr.Number(label="Radial 4", value=0.0, visible=False)
|
440 |
+
|
441 |
+
with gr.Column():
|
442 |
+
k5 = gr.Number(label="Radial 5", value=0.0, visible=False)
|
443 |
+
k6 = gr.Number(label="Radial 6", value=0.0, visible=False)
|
444 |
+
t1 = gr.Number(label="Tangential 1", value=0.0, visible=False)
|
445 |
+
t2 = gr.Number(label="Tangential 2", value=0.0, visible=False)
|
446 |
+
|
447 |
+
with gr.Row():
|
448 |
+
with gr.Column(scale=1):
|
449 |
+
input_image = gr.Image(label="Upload Images")
|
450 |
+
gr.Markdown("**3D Estimation**")
|
451 |
+
with gr.Row():
|
452 |
+
log_output = gr.Markdown(
|
453 |
+
"Please upload one image at a time, then click `Run UniK3D`.",
|
454 |
+
elem_classes=["custom-log"],
|
455 |
+
)
|
456 |
+
reconstruction_npy = gr.File(
|
457 |
+
label="Download 3D Pointcloud", type="filepath"
|
458 |
+
)
|
459 |
+
|
460 |
+
with gr.Column(scale=2):
|
461 |
+
reconstruction_output = gr.Model3D(
|
462 |
+
height=520, zoom_speed=0.5, pan_speed=0.5
|
463 |
+
)
|
464 |
+
with gr.Row():
|
465 |
+
submit_btn = gr.Button("Run UniK3D", scale=1, variant="primary")
|
466 |
+
clear_btn = gr.ClearButton(
|
467 |
+
[
|
468 |
+
input_image,
|
469 |
+
reconstruction_output,
|
470 |
+
log_output,
|
471 |
+
target_dir_output,
|
472 |
+
reconstruction_npy,
|
473 |
+
],
|
474 |
+
scale=1,
|
475 |
+
)
|
476 |
+
|
477 |
+
examples = [
|
478 |
+
[
|
479 |
+
"assets/demo/poorthings.jpg",
|
480 |
+
"Large",
|
481 |
+
"Predicted",
|
482 |
+
0.0,
|
483 |
+
0.0,
|
484 |
+
0.0,
|
485 |
+
0.0,
|
486 |
+
0.0,
|
487 |
+
0.0,
|
488 |
+
0.0,
|
489 |
+
0.0,
|
490 |
+
0.0,
|
491 |
+
0.0,
|
492 |
+
0.0,
|
493 |
+
0.0,
|
494 |
+
0.0,
|
495 |
+
True,
|
496 |
+
False,
|
497 |
+
],
|
498 |
+
[
|
499 |
+
"assets/demo/naruto.jpg",
|
500 |
+
"Large",
|
501 |
+
"Predicted",
|
502 |
+
0.0,
|
503 |
+
0.0,
|
504 |
+
0.0,
|
505 |
+
0.0,
|
506 |
+
0.0,
|
507 |
+
0.0,
|
508 |
+
0.0,
|
509 |
+
0.0,
|
510 |
+
0.0,
|
511 |
+
0.0,
|
512 |
+
0.0,
|
513 |
+
0.0,
|
514 |
+
0.0,
|
515 |
+
False,
|
516 |
+
False,
|
517 |
+
],
|
518 |
+
[
|
519 |
+
"assets/demo/bears.png",
|
520 |
+
"Large",
|
521 |
+
"Predicted",
|
522 |
+
0.0,
|
523 |
+
0.0,
|
524 |
+
0.0,
|
525 |
+
0.0,
|
526 |
+
0.0,
|
527 |
+
0.0,
|
528 |
+
0.0,
|
529 |
+
0.0,
|
530 |
+
0.0,
|
531 |
+
0.0,
|
532 |
+
0.0,
|
533 |
+
0.0,
|
534 |
+
0.0,
|
535 |
+
True,
|
536 |
+
False,
|
537 |
+
],
|
538 |
+
[
|
539 |
+
"assets/demo/berzirk.jpg",
|
540 |
+
"Large",
|
541 |
+
"Predicted",
|
542 |
+
0.0,
|
543 |
+
0.0,
|
544 |
+
0.0,
|
545 |
+
0.0,
|
546 |
+
0.0,
|
547 |
+
0.0,
|
548 |
+
0.0,
|
549 |
+
0.0,
|
550 |
+
0.0,
|
551 |
+
0.0,
|
552 |
+
0.0,
|
553 |
+
0.0,
|
554 |
+
0.0,
|
555 |
+
True,
|
556 |
+
False,
|
557 |
+
],
|
558 |
+
[
|
559 |
+
"assets/demo/luke.webp",
|
560 |
+
"Large",
|
561 |
+
"Predicted",
|
562 |
+
0.0,
|
563 |
+
0.0,
|
564 |
+
0.0,
|
565 |
+
0.0,
|
566 |
+
0.0,
|
567 |
+
0.0,
|
568 |
+
0.0,
|
569 |
+
0.0,
|
570 |
+
0.0,
|
571 |
+
0.0,
|
572 |
+
0.0,
|
573 |
+
0.0,
|
574 |
+
0.0,
|
575 |
+
False,
|
576 |
+
False,
|
577 |
+
],
|
578 |
+
[
|
579 |
+
"assets/demo/equirectangular.jpg",
|
580 |
+
"Large",
|
581 |
+
"Equirectangular",
|
582 |
+
0.0,
|
583 |
+
0.0,
|
584 |
+
0.0,
|
585 |
+
0.0,
|
586 |
+
0.0,
|
587 |
+
0.0,
|
588 |
+
0.0,
|
589 |
+
0.0,
|
590 |
+
0.0,
|
591 |
+
0.0,
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
360.0,
|
595 |
+
False,
|
596 |
+
False,
|
597 |
+
],
|
598 |
+
[
|
599 |
+
"assets/demo/venice.jpg",
|
600 |
+
"Large",
|
601 |
+
"Equirectangular",
|
602 |
+
0.0,
|
603 |
+
0.0,
|
604 |
+
0.0,
|
605 |
+
0.0,
|
606 |
+
0.0,
|
607 |
+
0.0,
|
608 |
+
0.0,
|
609 |
+
0.0,
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0,
|
613 |
+
0.0,
|
614 |
+
360.0,
|
615 |
+
False,
|
616 |
+
True,
|
617 |
+
],
|
618 |
+
[
|
619 |
+
"assets/demo/dl3dv.png",
|
620 |
+
"Large",
|
621 |
+
"OPENCV",
|
622 |
+
429.57611083984375,
|
623 |
+
429.6898193359375,
|
624 |
+
479.5,
|
625 |
+
269.5,
|
626 |
+
-0.0014844092074781656,
|
627 |
+
0.0007422995404340327,
|
628 |
+
0.0,
|
629 |
+
0.0,
|
630 |
+
0.0,
|
631 |
+
0.0,
|
632 |
+
0.00012013866944471374,
|
633 |
+
0.001125041046179831,
|
634 |
+
0.0,
|
635 |
+
False,
|
636 |
+
False,
|
637 |
+
],
|
638 |
+
[
|
639 |
+
"assets/demo/scannet.png",
|
640 |
+
"Large",
|
641 |
+
"Fisheye624",
|
642 |
+
791.90869140625,
|
643 |
+
792.7230834960938,
|
644 |
+
878.16796875,
|
645 |
+
585.045166015625,
|
646 |
+
-0.029167557135224342,
|
647 |
+
-0.006803446915000677,
|
648 |
+
-0.0012682401575148106,
|
649 |
+
-4.6094228309812024e-05,
|
650 |
+
0.0,
|
651 |
+
0.0,
|
652 |
+
0.0,
|
653 |
+
0.0,
|
654 |
+
0.0,
|
655 |
+
False,
|
656 |
+
False,
|
657 |
+
],
|
658 |
+
]
|
659 |
+
|
660 |
+
def example_pipeline(
|
661 |
+
input_image,
|
662 |
+
model_name,
|
663 |
+
camera_name,
|
664 |
+
fx,
|
665 |
+
fy,
|
666 |
+
cx,
|
667 |
+
cy,
|
668 |
+
k1,
|
669 |
+
k2,
|
670 |
+
k3,
|
671 |
+
k4,
|
672 |
+
k5,
|
673 |
+
k6,
|
674 |
+
t1,
|
675 |
+
t2,
|
676 |
+
hfov,
|
677 |
+
mask_black_bg,
|
678 |
+
mask_far_points,
|
679 |
+
):
|
680 |
+
target_dir, image_path = handle_uploads(input_image)
|
681 |
+
glbfile, log_msg, prediction_save_path = gradio_demo(
|
682 |
+
target_dir,
|
683 |
+
model_name,
|
684 |
+
camera_name,
|
685 |
+
fx,
|
686 |
+
fy,
|
687 |
+
cx,
|
688 |
+
cy,
|
689 |
+
k1,
|
690 |
+
k2,
|
691 |
+
k3,
|
692 |
+
k4,
|
693 |
+
k5,
|
694 |
+
k6,
|
695 |
+
t1,
|
696 |
+
t2,
|
697 |
+
hfov,
|
698 |
+
mask_black_bg,
|
699 |
+
mask_far_points,
|
700 |
+
)
|
701 |
+
return (
|
702 |
+
glbfile,
|
703 |
+
log_msg,
|
704 |
+
prediction_save_path,
|
705 |
+
target_dir,
|
706 |
+
image_path,
|
707 |
+
)
|
708 |
+
|
709 |
+
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
|
710 |
+
|
711 |
+
gr.Examples(
|
712 |
+
examples=examples,
|
713 |
+
inputs=[
|
714 |
+
input_image,
|
715 |
+
model_dropdown,
|
716 |
+
camera_dropdown,
|
717 |
+
fx,
|
718 |
+
fy,
|
719 |
+
cx,
|
720 |
+
cy,
|
721 |
+
k1,
|
722 |
+
k2,
|
723 |
+
k3,
|
724 |
+
k4,
|
725 |
+
k5,
|
726 |
+
k6,
|
727 |
+
t1,
|
728 |
+
t2,
|
729 |
+
hfov,
|
730 |
+
mask_black_bg,
|
731 |
+
mask_far_points,
|
732 |
+
],
|
733 |
+
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
734 |
+
fn=example_pipeline,
|
735 |
+
cache_examples=False,
|
736 |
+
examples_per_page=50,
|
737 |
+
)
|
738 |
+
|
739 |
+
submit_btn.click(
|
740 |
+
fn=clear_fields, inputs=[], outputs=[reconstruction_output]
|
741 |
+
).then(fn=update_log, inputs=[], outputs=[log_output]).then(
|
742 |
+
fn=gradio_demo,
|
743 |
+
inputs=[
|
744 |
+
target_dir_output,
|
745 |
+
model_dropdown,
|
746 |
+
camera_dropdown,
|
747 |
+
fx,
|
748 |
+
fy,
|
749 |
+
cx,
|
750 |
+
cy,
|
751 |
+
k1,
|
752 |
+
k2,
|
753 |
+
k3,
|
754 |
+
k4,
|
755 |
+
k5,
|
756 |
+
k6,
|
757 |
+
t1,
|
758 |
+
t2,
|
759 |
+
hfov,
|
760 |
+
mask_black_bg,
|
761 |
+
mask_far_points,
|
762 |
+
],
|
763 |
+
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
764 |
+
).then(
|
765 |
+
fn=lambda: "False", inputs=[], outputs=[is_example]
|
766 |
+
)
|
767 |
+
|
768 |
+
mask_black_bg.change(
|
769 |
+
update_visualization,
|
770 |
+
[target_dir_output, mask_black_bg, mask_far_points, is_example],
|
771 |
+
[reconstruction_output, log_output],
|
772 |
+
)
|
773 |
+
|
774 |
+
mask_far_points.change(
|
775 |
+
update_visualization,
|
776 |
+
[target_dir_output, mask_black_bg, mask_far_points, is_example],
|
777 |
+
[reconstruction_output, log_output],
|
778 |
+
)
|
779 |
+
|
780 |
+
input_image.change(
|
781 |
+
fn=update_gallery_on_upload,
|
782 |
+
inputs=[input_image],
|
783 |
+
outputs=[target_dir_output, log_output],
|
784 |
+
)
|
785 |
+
|
786 |
+
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
787 |
+
camera_dropdown.change(
|
788 |
+
fn=update_parameters,
|
789 |
+
inputs=camera_dropdown,
|
790 |
+
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
791 |
+
)
|
792 |
+
|
793 |
+
# demo.queue(max_size=20).launch(show_error=True, share=False, ssr_mode=False)
|
794 |
+
demo.launch(
|
795 |
+
show_error=True,
|
796 |
+
)
|
hubconf.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dependencies = ["torch", "huggingface_hub"]
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import huggingface_hub
|
8 |
+
|
9 |
+
from unik3d.models import UniK3D as UniK3D_
|
10 |
+
|
11 |
+
BACKBONES = ["vitl", "vitb", "vits"]
|
12 |
+
|
13 |
+
|
14 |
+
def UniK3D(backbone="vitl", pretrained=True):
|
15 |
+
assert backbone in BACKBONES, f"backbone must be one of {BACKBONES}"
|
16 |
+
repo_dir = os.path.dirname(os.path.realpath(__file__))
|
17 |
+
with open(os.path.join(repo_dir, "configs", f"config_{backbone}.json")) as f:
|
18 |
+
config = json.load(f)
|
19 |
+
|
20 |
+
model = UniK3D_(config)
|
21 |
+
if pretrained:
|
22 |
+
path = huggingface_hub.hf_hub_download(repo_id=f"lpiccinelli/unik3d-{backbone}", filename=f"pytorch_model.bin", repo_type="model")
|
23 |
+
info = model.load_state_dict(torch.load(path), strict=False)
|
24 |
+
print(f"UniK3D-{backbone} is loaded with:")
|
25 |
+
print(f"\t missing keys: {info.missing_keys}")
|
26 |
+
print(f"\t additional keys: {info.unexpected_keys}")
|
27 |
+
|
28 |
+
return model
|
29 |
+
|
pyproject.toml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[tool.pyright]
|
6 |
+
include = ["unik3d"]
|
7 |
+
|
8 |
+
[project]
|
9 |
+
name = "unik3d"
|
10 |
+
version = "0.1"
|
11 |
+
authors = [{name = "Luigi Piccinelli", email = "lpiccinelli@ethz.ch"}]
|
12 |
+
description = "UniK3D: Universal Monocular Metric Depth Estimation"
|
13 |
+
readme = "README.md"
|
14 |
+
license = { text="Creatives Common BY-NC 4.0 license"}
|
15 |
+
requires-python = ">=3.11.0"
|
16 |
+
dynamic = ["dependencies"]
|
17 |
+
|
18 |
+
[tool.setuptools.dynamic]
|
19 |
+
dependencies = {file = ["requirements.txt"]}
|
20 |
+
|
21 |
+
[tool.setuptools.package-data]
|
22 |
+
"*" = ["py.typed"]
|
23 |
+
|
24 |
+
[tool.setuptools.packages.find]
|
25 |
+
include = ["unik3d*"]
|
requirements.txt
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
appdirs
|
2 |
+
attrs
|
3 |
+
black
|
4 |
+
blosc2
|
5 |
+
botocore>=1.34.54
|
6 |
+
certifi>=2022.12.7
|
7 |
+
charset-normalizer
|
8 |
+
click
|
9 |
+
contourpy
|
10 |
+
cycler
|
11 |
+
docker-pycreds
|
12 |
+
einops>=0.7.0
|
13 |
+
filelock
|
14 |
+
flake8>=7.0.0
|
15 |
+
flake8-bugbear>=24.2.6
|
16 |
+
flake8-comprehensions>=3.14.0
|
17 |
+
fonttools
|
18 |
+
fsspec
|
19 |
+
fvcore>=0.1.5.post20221221
|
20 |
+
gitdb
|
21 |
+
GitPython
|
22 |
+
gradio
|
23 |
+
h5py>=3.10.0
|
24 |
+
huggingface-hub>=0.22.0
|
25 |
+
idna
|
26 |
+
imageio
|
27 |
+
imath
|
28 |
+
iopath
|
29 |
+
isort
|
30 |
+
Jinja2
|
31 |
+
jmespath
|
32 |
+
kiwisolver
|
33 |
+
MarkupSafe
|
34 |
+
matplotlib
|
35 |
+
mccabe
|
36 |
+
mpmath
|
37 |
+
msgpack
|
38 |
+
mypy-extensions
|
39 |
+
ndindex
|
40 |
+
networkx
|
41 |
+
ninja
|
42 |
+
numexpr
|
43 |
+
numpy<2.0.0
|
44 |
+
opencv-python
|
45 |
+
OpenEXR
|
46 |
+
packaging
|
47 |
+
pandas
|
48 |
+
pathspec
|
49 |
+
pillow>=10.2.0
|
50 |
+
platformdirs
|
51 |
+
portalocker
|
52 |
+
protobuf>=4.25.3
|
53 |
+
psutil
|
54 |
+
py-cpuinfo
|
55 |
+
pycodestyle
|
56 |
+
pyflakes
|
57 |
+
pyparsing
|
58 |
+
python-dateutil
|
59 |
+
pytz
|
60 |
+
PyYAML
|
61 |
+
requests
|
62 |
+
safetensors
|
63 |
+
scipy
|
64 |
+
sentry-sdk
|
65 |
+
setproctitle
|
66 |
+
six
|
67 |
+
smmap
|
68 |
+
sympy
|
69 |
+
tables
|
70 |
+
tabulate
|
71 |
+
termcolor
|
72 |
+
timm
|
73 |
+
tqdm
|
74 |
+
trimesh
|
75 |
+
triton>=2.4.0
|
76 |
+
typing_extensions
|
77 |
+
tzdata==2024.1
|
78 |
+
urllib3==1.26.13
|
79 |
+
wandb
|
80 |
+
yacs
|
81 |
+
torch>=2.4.0
|
82 |
+
torchvision>=0.19.0
|
83 |
+
torchaudio>=2.4.0
|
84 |
+
xformers>=0.0.26
|
requirements_demo.txt
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
appdirs
|
2 |
+
attrs
|
3 |
+
black
|
4 |
+
blosc2
|
5 |
+
botocore>=1.34.54
|
6 |
+
certifi>=2022.12.7
|
7 |
+
charset-normalizer
|
8 |
+
click
|
9 |
+
contourpy
|
10 |
+
cycler
|
11 |
+
docker-pycreds
|
12 |
+
einops>=0.7.0
|
13 |
+
filelock
|
14 |
+
flake8>=7.0.0
|
15 |
+
flake8-bugbear>=24.2.6
|
16 |
+
flake8-comprehensions>=3.14.0
|
17 |
+
fonttools
|
18 |
+
fsspec
|
19 |
+
fvcore>=0.1.5.post20221221
|
20 |
+
gitdb
|
21 |
+
GitPython
|
22 |
+
gradio
|
23 |
+
h5py>=3.10.0
|
24 |
+
huggingface-hub>=0.22.0
|
25 |
+
idna
|
26 |
+
imageio
|
27 |
+
imath
|
28 |
+
iopath
|
29 |
+
isort
|
30 |
+
Jinja2
|
31 |
+
jmespath
|
32 |
+
kiwisolver
|
33 |
+
MarkupSafe
|
34 |
+
matplotlib
|
35 |
+
mccabe
|
36 |
+
mpmath
|
37 |
+
msgpack
|
38 |
+
mypy-extensions
|
39 |
+
ndindex
|
40 |
+
networkx
|
41 |
+
ninja
|
42 |
+
numexpr
|
43 |
+
numpy<2.0.0
|
44 |
+
opencv-python
|
45 |
+
OpenEXR
|
46 |
+
packaging
|
47 |
+
pandas
|
48 |
+
pathspec
|
49 |
+
pillow>=10.2.0
|
50 |
+
platformdirs
|
51 |
+
portalocker
|
52 |
+
protobuf>=4.25.3
|
53 |
+
psutil
|
54 |
+
py-cpuinfo
|
55 |
+
pycodestyle
|
56 |
+
pyflakes
|
57 |
+
pyparsing
|
58 |
+
python-dateutil
|
59 |
+
pytz
|
60 |
+
PyYAML
|
61 |
+
requests
|
62 |
+
safetensors
|
63 |
+
scipy
|
64 |
+
sentry-sdk
|
65 |
+
setproctitle
|
66 |
+
six
|
67 |
+
smmap
|
68 |
+
sympy
|
69 |
+
tables
|
70 |
+
tabulate
|
71 |
+
termcolor
|
72 |
+
timm
|
73 |
+
tqdm
|
74 |
+
trimesh
|
75 |
+
triton>=2.4.0
|
76 |
+
typing_extensions
|
77 |
+
tzdata==2024.1
|
78 |
+
urllib3==1.26.13
|
79 |
+
wandb
|
80 |
+
yacs
|
81 |
+
torch>=2.4.0
|
82 |
+
torchvision>=0.19.0
|
83 |
+
torchaudio>=2.4.0
|
84 |
+
xformers>=0.0.26
|
scripts/README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Training
|
2 |
+
|
3 |
+
We provide the `train.py` script that allows to load the dataset, initialize and start the training. From the root of the repo:
|
4 |
+
|
5 |
+
```bash
|
6 |
+
export REPO=`pwd`
|
7 |
+
export PYTHONPATH=${REPO}:${PYTHONPATH}
|
8 |
+
|
9 |
+
# Adapt all this to your setup
|
10 |
+
export TMPDIR="/tmp"
|
11 |
+
export TORCH_HOME=${TMPDIR}
|
12 |
+
export HUGGINGFACE_HUB_CACHE=${TMPDIR}
|
13 |
+
export WANDB_HOME=${TMPDIR}
|
14 |
+
export DATAROOT=<where-you-stored-the-hdf5>
|
15 |
+
|
16 |
+
|
17 |
+
export MASTER_PORT=$((( RANDOM % 600 ) + 29400 ))
|
18 |
+
if [ $NNODES -gt 1 ]; then
|
19 |
+
export MASTER_PORT=29400
|
20 |
+
fi
|
21 |
+
|
22 |
+
# this is the config will be used
|
23 |
+
export CFG="config_vitl.json"
|
24 |
+
```
|
25 |
+
|
26 |
+
If you are on a machine without SLURM you can run the following:
|
27 |
+
```bash
|
28 |
+
# make the following input-dependent for multi-node
|
29 |
+
export NNODES=1
|
30 |
+
export RANK=0
|
31 |
+
export MASTER_ADDR=127.0.0.1
|
32 |
+
export CUDA_VISIBLE_DEVICES="0" # set yours
|
33 |
+
|
34 |
+
export GPUS=$(echo ${CUDA_VISIBLE_DEVICES} | tr ',' '\n' | wc -l)
|
35 |
+
echo "Start script with python from: `which python`"
|
36 |
+
torchrun --rdzv-backend=c10d --nnodes=${NNODES} --nproc_per_node=${GPUS} --rdzv-endpoint ${MASTER_ADDR}:${MASTER_PORT} ${REPO}/scripts/train.py --config-file ${REPO}/configs/${CFG} --distributed
|
37 |
+
```
|
38 |
+
|
39 |
+
If you system has SLURM, all the information will be set by the scheduler and you have to run just:
|
40 |
+
```bash
|
41 |
+
srun -c ${SLURM_CPUS_PER_TASK} --kill-on-bad-exit=1 python -u ${REPO}/scripts/train.py --config-file ${REPO}/configs/${CFG} --master-port ${MASTER_PORT} --distributed
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
### Datasets
|
46 |
+
|
47 |
+
We used both image-based and sequence-based dataset. The `ImageDataset` class is actually for legacy only as we moved image-based dataset to be "dummy" single-frame sequences.<br>
|
48 |
+
We [provide two example dataset to get familiar to the pipeline and structure, namely iBims-1 and Sintel](https://drive.google.com/drive/folders/1FKsa5-b3EX0ukZq7bxord5fC5OfUiy16?usp=sharing), image- and sequence-based, respectively.<br>
|
49 |
+
You can adapt the data loading and processing to your example; however, you will need to keep the same interface for the model to be consisten and train "out-of-the-box" the model.<br>
|
50 |
+
|
51 |
+
|
52 |
+
### Additional dependencies
|
53 |
+
|
54 |
+
We require chamfer distance for the evaluation, you can compile the knn operation under `ops/knn`: `bash compile.sh` from the directory `$REPO/unik3d/ops/knn`. Set the correct `export TORCH_CUDA_ARCH_LIST`, according to the hardware you are working on.
|
55 |
+
For training and to perform augmentation, you can use `camera_augmenter.py`; however the splatting requires you to install operations by cloning and installing from `github.com/hperrot/splatting`.
|
scripts/demo.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from unik3d.models import UniK3D
|
11 |
+
from unik3d.utils.camera import (MEI, OPENCV, BatchCamera, Fisheye624, Pinhole,
|
12 |
+
Spherical)
|
13 |
+
from unik3d.utils.visualization import colorize, save_file_ply
|
14 |
+
|
15 |
+
SAVE = False
|
16 |
+
BASE_PATH = os.path.join(
|
17 |
+
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "assets", "demo"
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def infer(model, rgb_path, camera_path, rays=None):
|
22 |
+
rgb = np.array(Image.open(rgb_path))
|
23 |
+
rgb_torch = torch.from_numpy(rgb).permute(2, 0, 1)
|
24 |
+
|
25 |
+
camera = None
|
26 |
+
if camera_path is not None:
|
27 |
+
with open(camera_path, "r") as f:
|
28 |
+
camera_dict = json.load(f)
|
29 |
+
|
30 |
+
params = torch.tensor(camera_dict["params"])
|
31 |
+
name = camera_dict["name"]
|
32 |
+
assert name in ["Fisheye624", "Spherical", "OPENCV", "Pinhole", "MEI"]
|
33 |
+
camera = eval(name)(params=params)
|
34 |
+
|
35 |
+
outputs = model.infer(rgb=rgb_torch, camera=camera, normalize=True, rays=rays)
|
36 |
+
|
37 |
+
return rgb_torch, outputs
|
38 |
+
|
39 |
+
|
40 |
+
def infer_equirectangular(model, rgb_path):
|
41 |
+
rgb = np.array(Image.open(rgb_path))
|
42 |
+
rgb_torch = torch.from_numpy(rgb).permute(2, 0, 1)
|
43 |
+
|
44 |
+
# assuming full equirectangular image horizontally
|
45 |
+
H, W = rgb.shape[:2]
|
46 |
+
hfov_half = np.pi
|
47 |
+
vfov_half = np.pi * H / W
|
48 |
+
assert vfov_half <= np.pi / 2
|
49 |
+
|
50 |
+
params = [W, H, hfov_half, vfov_half]
|
51 |
+
camera = Spherical(params=torch.tensor([1.0] * 4 + params))
|
52 |
+
|
53 |
+
outputs = model.infer(rgb=rgb_torch, camera=camera, normalize=True)
|
54 |
+
return rgb_torch, outputs
|
55 |
+
|
56 |
+
|
57 |
+
def save(rgb, outputs, name, base_path, save_pointcloud=False):
|
58 |
+
depth = outputs["depth"]
|
59 |
+
rays = outputs["rays"]
|
60 |
+
points = outputs["points"]
|
61 |
+
|
62 |
+
depth = depth.cpu().numpy()
|
63 |
+
rays = ((rays + 1) * 127.5).clip(0, 255)
|
64 |
+
|
65 |
+
Image.fromarray(colorize(depth.squeeze())).save(
|
66 |
+
os.path.join(base_path, f"{name}_depth.png")
|
67 |
+
)
|
68 |
+
Image.fromarray(rgb.squeeze().permute(1, 2, 0).cpu().numpy()).save(
|
69 |
+
os.path.join(base_path, f"{name}_rgb.png")
|
70 |
+
)
|
71 |
+
Image.fromarray(rays.squeeze().permute(1, 2, 0).byte().cpu().numpy()).save(
|
72 |
+
os.path.join(base_path, f"{name}_rays.png")
|
73 |
+
)
|
74 |
+
|
75 |
+
if save_pointcloud:
|
76 |
+
predictions_3d = points.permute(0, 2, 3, 1).reshape(-1, 3).cpu().numpy()
|
77 |
+
rgb = rgb.permute(1, 2, 0).reshape(-1, 3).cpu().numpy()
|
78 |
+
save_file_ply(predictions_3d, rgb, os.path.join(base_path, f"{name}.ply"))
|
79 |
+
|
80 |
+
|
81 |
+
def demo(model):
|
82 |
+
# RGB + CAMERA
|
83 |
+
rgb, outputs = infer(
|
84 |
+
model,
|
85 |
+
os.path.join(BASE_PATH, f"scannet.png"),
|
86 |
+
os.path.join(BASE_PATH, "scannet.json"),
|
87 |
+
)
|
88 |
+
if SAVE:
|
89 |
+
save(rgb, outputs, name="scannet", base_path=BASE_PATH)
|
90 |
+
|
91 |
+
# get GT and pred
|
92 |
+
pts_pred = outputs["points"].squeeze().cpu().permute(1, 2, 0).numpy()
|
93 |
+
pts_gt = np.load("./assets/demo/scannet.npy").astype(float)
|
94 |
+
mask = np.linalg.norm(pts_gt, axis=-1) > 0
|
95 |
+
error = np.linalg.norm(pts_pred - pts_gt, axis=-1)
|
96 |
+
error = np.mean(error[mask] ** 2) ** 0.5
|
97 |
+
|
98 |
+
# Trade-off between speed and resolution
|
99 |
+
model.resolution_level = 1
|
100 |
+
rgb, outputs = infer(
|
101 |
+
model,
|
102 |
+
os.path.join(BASE_PATH, f"scannet.png"),
|
103 |
+
os.path.join(BASE_PATH, "scannet.json"),
|
104 |
+
)
|
105 |
+
if SAVE:
|
106 |
+
save(rgb, outputs, name="scannet_lowres", base_path=BASE_PATH)
|
107 |
+
|
108 |
+
# RGB
|
109 |
+
rgb, outputs = infer(model, os.path.join(BASE_PATH, f"poorthings.jpg"), None)
|
110 |
+
if SAVE:
|
111 |
+
save(rgb, outputs, name="poorthings", base_path=BASE_PATH)
|
112 |
+
|
113 |
+
# RGB + CAMERA
|
114 |
+
rgb, outputs = infer(
|
115 |
+
model,
|
116 |
+
os.path.join(BASE_PATH, f"dl3dv.png"),
|
117 |
+
os.path.join(BASE_PATH, "dl3dv.json"),
|
118 |
+
)
|
119 |
+
if SAVE:
|
120 |
+
save(rgb, outputs, name="dl3dv", base_path=BASE_PATH)
|
121 |
+
|
122 |
+
# EQUIRECTANGULAR
|
123 |
+
rgb, outputs = infer_equirectangular(
|
124 |
+
model, os.path.join(BASE_PATH, f"equirectangular.jpg")
|
125 |
+
)
|
126 |
+
if SAVE:
|
127 |
+
save(rgb, outputs, name="equirectangular", base_path=BASE_PATH)
|
128 |
+
|
129 |
+
print("Output keys are", outputs.keys())
|
130 |
+
|
131 |
+
if SAVE:
|
132 |
+
print("Done! Results saved in", BASE_PATH)
|
133 |
+
|
134 |
+
print(f"RMSE on 3D clouds for ScanNet++ sample: {100*error:.1f}cm")
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
print("Torch version:", torch.__version__)
|
139 |
+
type_ = "l" # available types: s, b, l
|
140 |
+
name = f"unik3d-vit{type_}"
|
141 |
+
model = UniK3D.from_pretrained(f"lpiccinelli/{name}")
|
142 |
+
|
143 |
+
# set resolution level in [0,10) and output interpolation
|
144 |
+
model.resolution_level = 9
|
145 |
+
model.interpolation_mode = "bilinear"
|
146 |
+
|
147 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
148 |
+
model = model.to(device).eval()
|
149 |
+
|
150 |
+
demo(model)
|
scripts/train.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import uuid
|
6 |
+
from contextlib import nullcontext
|
7 |
+
from copy import deepcopy
|
8 |
+
from datetime import datetime as dt
|
9 |
+
from functools import partial
|
10 |
+
from math import log2
|
11 |
+
from time import sleep, time
|
12 |
+
from typing import Any, Dict
|
13 |
+
|
14 |
+
import git
|
15 |
+
import numpy as np
|
16 |
+
import psutil
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.data.distributed
|
20 |
+
import wandb
|
21 |
+
from PIL import Image
|
22 |
+
from torch import distributed as dist
|
23 |
+
from torch import optim
|
24 |
+
from torch.nn.parallel.distributed import DistributedDataParallel
|
25 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
26 |
+
from tqdm import tqdm
|
27 |
+
|
28 |
+
import unik3d.datasets as datasets
|
29 |
+
from unik3d.datasets import (ConcatDataset, DistributedSamplerNoDuplicate,
|
30 |
+
collate_fn, get_weights)
|
31 |
+
from unik3d.models import UniK3D
|
32 |
+
from unik3d.ops.scheduler import CosineScheduler
|
33 |
+
from unik3d.utils import (barrier, format_seconds, is_main_process,
|
34 |
+
log_train_artifacts, validate)
|
35 |
+
from unik3d.utils.distributed import (create_local_process_group,
|
36 |
+
local_broadcast_process_authkey,
|
37 |
+
setup_multi_processes, setup_slurm,
|
38 |
+
sync_string_across_gpus,
|
39 |
+
sync_tensor_across_gpus)
|
40 |
+
from unik3d.utils.ema_torch import (DummyExponentialMovingAverage,
|
41 |
+
ExponentialMovingAverage)
|
42 |
+
from unik3d.utils.misc import calculate_mean_values
|
43 |
+
|
44 |
+
EMA_INTERVAL = 10
|
45 |
+
EMA_TAU = 10000
|
46 |
+
EMA_START = 50000
|
47 |
+
|
48 |
+
|
49 |
+
MAP_DTYPE = {
|
50 |
+
"f16": torch.float16,
|
51 |
+
"bf16": torch.bfloat16,
|
52 |
+
"f32": torch.float32,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def aggregate_sync_losses(dict_: dict[str, torch.Tensor], device):
|
57 |
+
keys = list(dict_.keys())
|
58 |
+
values = torch.tensor(list(dict_.values()), device=device)
|
59 |
+
keys = sync_string_across_gpus(keys, device)
|
60 |
+
values = sync_tensor_across_gpus(values, dim=0).cpu().tolist()
|
61 |
+
dict_ = calculate_mean_values(keys, values)
|
62 |
+
return dict_
|
63 |
+
|
64 |
+
|
65 |
+
def main_worker(config: Dict[str, Any], args: argparse.Namespace):
|
66 |
+
|
67 |
+
current_process = psutil.Process(os.getpid())
|
68 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
69 |
+
seed = config["generic"]["seed"]
|
70 |
+
|
71 |
+
if not args.distributed:
|
72 |
+
args.rank = 0
|
73 |
+
args.local_rank = 0
|
74 |
+
args.world_size = 1
|
75 |
+
else:
|
76 |
+
# initializes the distributed backend which will take care of synchronizing nodes/GPUs
|
77 |
+
setup_multi_processes(config)
|
78 |
+
is_slurm = "SLURM_PROCID" in os.environ
|
79 |
+
if is_slurm:
|
80 |
+
setup_slurm("nccl", port=args.master_port)
|
81 |
+
args.rank = int(os.environ["RANK"])
|
82 |
+
args.world_size = int(os.environ["WORLD_SIZE"])
|
83 |
+
args.local_rank = device = int(os.environ["LOCAL_RANK"])
|
84 |
+
if not is_slurm:
|
85 |
+
import datetime
|
86 |
+
|
87 |
+
dist.init_process_group(
|
88 |
+
"nccl",
|
89 |
+
rank=args.rank,
|
90 |
+
world_size=args.world_size,
|
91 |
+
timeout=datetime.timedelta(seconds=30 * 60),
|
92 |
+
)
|
93 |
+
torch.cuda.set_device(device)
|
94 |
+
create_local_process_group()
|
95 |
+
local_broadcast_process_authkey()
|
96 |
+
print(
|
97 |
+
f"Start running DDP on: {args.rank} (local: {args.local_rank}) with seed {seed + args.rank}."
|
98 |
+
)
|
99 |
+
config["training"]["batch_size"] = int(
|
100 |
+
config["training"]["batch_size"] / args.world_size
|
101 |
+
)
|
102 |
+
dist.barrier()
|
103 |
+
|
104 |
+
# Fix seed
|
105 |
+
# Different for every machine to avoid sampling
|
106 |
+
# the same element across machines
|
107 |
+
seed = seed + args.rank
|
108 |
+
random.seed(seed)
|
109 |
+
np.random.seed(seed)
|
110 |
+
torch.manual_seed(seed)
|
111 |
+
torch.cuda.manual_seed(seed)
|
112 |
+
torch.cuda.manual_seed_all(seed)
|
113 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
114 |
+
|
115 |
+
batch_size = config["training"]["batch_size"]
|
116 |
+
if is_main_process():
|
117 |
+
print("Config: ", args.config_file)
|
118 |
+
print(
|
119 |
+
f"Torch version:{torch.__version__}, cuda:{torch.version.cuda}, cudnn:{torch.backends.cudnn.version()}, threads:{torch.get_num_threads()}"
|
120 |
+
)
|
121 |
+
print("BatchSize per GPU: ", batch_size)
|
122 |
+
print(
|
123 |
+
f"Divided into {config['training']['nsteps_accumulation_gradient']} accumulation step"
|
124 |
+
)
|
125 |
+
|
126 |
+
##############################
|
127 |
+
########### MODEL ############
|
128 |
+
##############################
|
129 |
+
# Build model
|
130 |
+
model = UniK3D(config).to(device)
|
131 |
+
model.eval()
|
132 |
+
print(f"MODEL: {model.__class__.__name__} at {model.device}")
|
133 |
+
torch.cuda.empty_cache()
|
134 |
+
|
135 |
+
if args.distributed:
|
136 |
+
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
137 |
+
model = DistributedDataParallel(
|
138 |
+
model,
|
139 |
+
find_unused_parameters=False,
|
140 |
+
device_ids=[device],
|
141 |
+
output_device=device,
|
142 |
+
)
|
143 |
+
|
144 |
+
##############################
|
145 |
+
######### OPTIMIZER ##########
|
146 |
+
##############################
|
147 |
+
dtype_16bit = config["training"]["f16"]
|
148 |
+
is_16bit = dtype_16bit != "f32"
|
149 |
+
clipping = config["training"].get("clipping", None)
|
150 |
+
|
151 |
+
# Optimize
|
152 |
+
ddp_model = model.module if args.distributed else model
|
153 |
+
params = ddp_model.get_params(config)
|
154 |
+
optimizer = optim.AdamW(
|
155 |
+
params,
|
156 |
+
eps=6e-8 if is_16bit else 1e-8, # smallest subnormal fp16 number is 5.96e-8
|
157 |
+
# amsgrad=is_16bit, # use max instead of avg v_hat, avoid small number divisions?
|
158 |
+
)
|
159 |
+
|
160 |
+
# Load Model:
|
161 |
+
step = 0
|
162 |
+
if config["training"].get("pretrained", None) is not None:
|
163 |
+
ddp_model.load_pretrained(config["training"]["pretrained"])
|
164 |
+
pretrained = torch.load(
|
165 |
+
config["training"]["pretrained"], map_location="cpu", weights_only=False
|
166 |
+
)
|
167 |
+
try:
|
168 |
+
optimizer.load_state_dict(pretrained["optimizer"])
|
169 |
+
except Exception as e:
|
170 |
+
if is_main_process():
|
171 |
+
print("Could not load optimizer state dict:", e)
|
172 |
+
step = pretrained.get("step", 0)
|
173 |
+
ddp_model.pixel_decoder.steps = step
|
174 |
+
|
175 |
+
# EMA
|
176 |
+
ema_class = (
|
177 |
+
ExponentialMovingAverage
|
178 |
+
if config["training"]["ema"] > 0.0
|
179 |
+
else DummyExponentialMovingAverage
|
180 |
+
)
|
181 |
+
ema_handle = ema_class(
|
182 |
+
ddp_model.parameters_grad(),
|
183 |
+
1 - (1 - config["training"]["ema"]) * EMA_INTERVAL,
|
184 |
+
update_after_step=config["training"]["warmup_iters"] / EMA_INTERVAL,
|
185 |
+
switch=True,
|
186 |
+
tau=EMA_TAU // EMA_INTERVAL,
|
187 |
+
)
|
188 |
+
setattr(ema_handle, "num_updates", step // EMA_INTERVAL)
|
189 |
+
|
190 |
+
##############################
|
191 |
+
######### GENERICS ###########
|
192 |
+
##############################
|
193 |
+
resize_method = config["data"].get("resize_method", "hard")
|
194 |
+
crop = config["data"].get("crop", "garg")
|
195 |
+
augmentations_db = config["data"].get("augmentations", {})
|
196 |
+
shape_constraints = config["data"].get("shape_constraints", {})
|
197 |
+
image_shape = config["data"]["image_shape"]
|
198 |
+
mini = config["data"]["mini"]
|
199 |
+
nsteps_accumulation_gradient = config["training"]["nsteps_accumulation_gradient"]
|
200 |
+
batch_size = config["training"]["batch_size"]
|
201 |
+
clipping_fn = torch.nn.utils.clip_grad_norm_
|
202 |
+
|
203 |
+
is_shell = int(os.environ.get("SHELL_JOB", 0))
|
204 |
+
run_id = sync_string_across_gpus(
|
205 |
+
[f"{dt.now().strftime('%d-%h_%H-%M')}-{uuid.uuid4()}"], device
|
206 |
+
)[0]
|
207 |
+
|
208 |
+
if not is_shell and is_main_process():
|
209 |
+
repo_folder = os.path.dirname(os.path.realpath(__file__))
|
210 |
+
try:
|
211 |
+
repo = git.Repo(repo_folder)
|
212 |
+
current_head = repo.head if repo.head.is_detached else repo.active_branch
|
213 |
+
notes = f"MESSAGE: {current_head.commit.message} HASH:{current_head.commit.hexsha} BRANCH:{current_head.name}"
|
214 |
+
except:
|
215 |
+
print(f"problem with {repo_folder}, does it exist?")
|
216 |
+
notes = ""
|
217 |
+
|
218 |
+
# restore the original batchsize, not acquired by other calls from now on
|
219 |
+
if args.distributed:
|
220 |
+
config["training"]["batch_size"] = (
|
221 |
+
config["training"]["batch_size"] * args.world_size
|
222 |
+
)
|
223 |
+
wandb.init(
|
224 |
+
project="UniK3D",
|
225 |
+
name=run_id,
|
226 |
+
config=config,
|
227 |
+
tags=None,
|
228 |
+
notes=notes,
|
229 |
+
dir=os.environ.get("WANDB_HOME", os.environ.get("TMPDIR", "/tmp")),
|
230 |
+
)
|
231 |
+
wandb.watch(model)
|
232 |
+
|
233 |
+
##############################
|
234 |
+
########## DATASET ###########
|
235 |
+
##############################
|
236 |
+
# Datasets loading
|
237 |
+
train_datasets, val_datasets = {}, {}
|
238 |
+
if is_main_process():
|
239 |
+
print("Loading training datasets...")
|
240 |
+
dims = 0
|
241 |
+
|
242 |
+
for dataset in config["data"]["train_datasets"]:
|
243 |
+
assert hasattr(datasets, dataset), f"{dataset} not a custom dataset"
|
244 |
+
train_dataset: datasets.BaseDataset = getattr(datasets, dataset)
|
245 |
+
train_datasets[dataset] = train_dataset(
|
246 |
+
image_shape=image_shape,
|
247 |
+
split_file=train_dataset.train_split,
|
248 |
+
test_mode=False,
|
249 |
+
crop=crop,
|
250 |
+
augmentations_db=augmentations_db,
|
251 |
+
shape_constraints=shape_constraints,
|
252 |
+
normalize=config["data"].get("normalization", "imagenet"),
|
253 |
+
resize_method=resize_method,
|
254 |
+
mini=mini,
|
255 |
+
num_frames=config["data"].get("num_frames", 1),
|
256 |
+
fps_range=[1, 5],
|
257 |
+
num_copies=config["data"]["pair"],
|
258 |
+
)
|
259 |
+
dim = (
|
260 |
+
train_datasets[dataset].dataset._addr.numel() * 8
|
261 |
+
+ train_datasets[dataset].dataset._lst.numel()
|
262 |
+
) / (2**20)
|
263 |
+
if hasattr(train_datasets[dataset], "sequences"):
|
264 |
+
dim += (
|
265 |
+
train_datasets[dataset].sequences._addr.numel() * 8
|
266 |
+
+ train_datasets[dataset].sequences._lst.numel()
|
267 |
+
) / (2**20)
|
268 |
+
dims = dims + dim
|
269 |
+
if is_main_process():
|
270 |
+
print(f"{dataset}: {dim:.1f}MB")
|
271 |
+
|
272 |
+
print(f"All training datasets loaded, with total size: {dims:.1f}MB")
|
273 |
+
|
274 |
+
barrier()
|
275 |
+
|
276 |
+
assert batch_size % config["data"]["pair"] == 0
|
277 |
+
batch_size = batch_size // config["data"]["pair"]
|
278 |
+
assert batch_size % nsteps_accumulation_gradient == 0
|
279 |
+
batch_chunk = batch_size // nsteps_accumulation_gradient
|
280 |
+
|
281 |
+
train_dataset = ConcatDataset(
|
282 |
+
list(train_datasets.values()),
|
283 |
+
shape_constraints=shape_constraints,
|
284 |
+
)
|
285 |
+
|
286 |
+
if is_main_process():
|
287 |
+
print("Loading validation datasets...")
|
288 |
+
for dataset in config["data"]["val_datasets"]:
|
289 |
+
val_dataset: datasets.BaseDataset = getattr(datasets, dataset)
|
290 |
+
val_datasets[dataset] = val_dataset(
|
291 |
+
image_shape=image_shape,
|
292 |
+
split_file=val_dataset.test_split,
|
293 |
+
test_mode=True,
|
294 |
+
crop=crop,
|
295 |
+
shape_constraints=shape_constraints,
|
296 |
+
augmentations_db=augmentations_db,
|
297 |
+
normalize=config["data"].get("normalization", "imagenet"),
|
298 |
+
resize_method=resize_method,
|
299 |
+
num_frames=1,
|
300 |
+
mini=1.0,
|
301 |
+
num_copies=1,
|
302 |
+
)
|
303 |
+
|
304 |
+
# Dataset samplers, create distributed sampler pinned to rank
|
305 |
+
if args.distributed:
|
306 |
+
sampling = deepcopy(config["data"]["sampling"])
|
307 |
+
weights, num_samples = get_weights(train_datasets, sampling)
|
308 |
+
train_sampler = torch.utils.data.WeightedRandomSampler(
|
309 |
+
weights, num_samples, replacement=True
|
310 |
+
)
|
311 |
+
valid_samplers = {
|
312 |
+
k: DistributedSamplerNoDuplicate(
|
313 |
+
v,
|
314 |
+
num_replicas=args.world_size,
|
315 |
+
rank=args.rank,
|
316 |
+
shuffle=False,
|
317 |
+
drop_last=False,
|
318 |
+
)
|
319 |
+
for k, v in val_datasets.items()
|
320 |
+
}
|
321 |
+
else:
|
322 |
+
train_sampler = RandomSampler(train_dataset)
|
323 |
+
valid_samplers = {k: SequentialSampler(v) for k, v in val_datasets.items()}
|
324 |
+
|
325 |
+
train_sampler = torch.utils.data.BatchSampler(
|
326 |
+
train_sampler, batch_size=batch_size, drop_last=True
|
327 |
+
)
|
328 |
+
|
329 |
+
# Dataset loader
|
330 |
+
val_batch_size = 1
|
331 |
+
num_workers = int(os.environ.get("SLURM_CPUS_PER_TASK", 4))
|
332 |
+
train_loader = DataLoader(
|
333 |
+
train_dataset,
|
334 |
+
num_workers=num_workers,
|
335 |
+
sampler=train_sampler,
|
336 |
+
pin_memory=True,
|
337 |
+
collate_fn=partial(collate_fn, is_batched=True),
|
338 |
+
persistent_workers=True if num_workers else None,
|
339 |
+
)
|
340 |
+
val_loaders = {
|
341 |
+
name_dataset: DataLoader(
|
342 |
+
dataset,
|
343 |
+
batch_size=val_batch_size,
|
344 |
+
shuffle=False,
|
345 |
+
num_workers=num_workers,
|
346 |
+
sampler=valid_samplers[name_dataset],
|
347 |
+
pin_memory=True,
|
348 |
+
drop_last=False,
|
349 |
+
collate_fn=partial(collate_fn, is_batched=False),
|
350 |
+
)
|
351 |
+
for name_dataset, dataset in val_datasets.items()
|
352 |
+
}
|
353 |
+
|
354 |
+
# SCHEDULERS!
|
355 |
+
scheduler_wd = CosineScheduler(
|
356 |
+
optimizer,
|
357 |
+
key="weight_decay",
|
358 |
+
init_value=config["training"]["wd"],
|
359 |
+
base_value=config["training"]["wd"],
|
360 |
+
final_value=config["training"]["wd_final"],
|
361 |
+
warmup_iters=0,
|
362 |
+
total_iters=config["training"]["n_iters"],
|
363 |
+
flat_iters=config["training"]["warmup_iters"],
|
364 |
+
step_init=step - 1,
|
365 |
+
)
|
366 |
+
scheduler_lr = CosineScheduler(
|
367 |
+
optimizer,
|
368 |
+
key="lr",
|
369 |
+
init_value=config["training"]["lr"] * config["training"].get("lr_warmup", 1.0),
|
370 |
+
final_value=config["training"]["lr_final"],
|
371 |
+
warmup_iters=5000,
|
372 |
+
flat_iters=config["training"]["warmup_iters"],
|
373 |
+
total_iters=config["training"]["n_iters"],
|
374 |
+
step_init=step - 1,
|
375 |
+
)
|
376 |
+
scheduler_betas = CosineScheduler(
|
377 |
+
optimizer,
|
378 |
+
key="betas",
|
379 |
+
init_value=0.95 if config["training"].get("cycle_betas", True) else 0.9,
|
380 |
+
base_value=0.85 if config["training"].get("cycle_betas", True) else 0.9,
|
381 |
+
final_value=0.95 if config["training"].get("cycle_betas", True) else 0.9,
|
382 |
+
warmup_iters=config["training"]["warmup_iters"],
|
383 |
+
total_iters=config["training"]["n_iters"],
|
384 |
+
step_init=step - 1,
|
385 |
+
)
|
386 |
+
|
387 |
+
# Set loss scaler for half precision training + sanity zeroing grads
|
388 |
+
dtype = MAP_DTYPE[dtype_16bit]
|
389 |
+
if not torch.cuda.is_bf16_supported() and is_16bit:
|
390 |
+
dtype = torch.float16
|
391 |
+
|
392 |
+
context = torch.autocast(device_type="cuda", dtype=dtype, enabled=is_16bit)
|
393 |
+
# use float16 to check for instability at inference an avoid bfloat16 for coarseness
|
394 |
+
context_val = torch.autocast(
|
395 |
+
device_type="cuda", dtype=torch.float16, enabled=is_16bit
|
396 |
+
)
|
397 |
+
optimizer.zero_grad(set_to_none=True)
|
398 |
+
|
399 |
+
##############################
|
400 |
+
########## TRAINING ##########
|
401 |
+
##############################
|
402 |
+
# Remember that if i-th layer is frozen, this will break gradient checkpointing
|
403 |
+
# in layer i+1-th. This is because CheckpointFunction treats the i+1-th input as
|
404 |
+
# without gradient, thus the i+1-th layer does not have grads (?). To solve it,
|
405 |
+
# just add requires_grad_() to the inputs coming from the frozen layer
|
406 |
+
ddp_model.train()
|
407 |
+
|
408 |
+
start = time()
|
409 |
+
n_steps = config["training"]["n_iters"]
|
410 |
+
init_steps = int(step)
|
411 |
+
track_pbar = is_shell
|
412 |
+
|
413 |
+
if is_main_process():
|
414 |
+
print("Is a shell job?", is_shell)
|
415 |
+
print("Use dtype:", dtype if is_16bit else torch.float32)
|
416 |
+
print(
|
417 |
+
f'Train for {config["training"]["n_iters"]} steps, validate every {config["training"]["validation_interval"]} steps'
|
418 |
+
)
|
419 |
+
print(f"START with {num_workers} workers")
|
420 |
+
if track_pbar:
|
421 |
+
pbar = tqdm(total=n_steps - init_steps)
|
422 |
+
|
423 |
+
scaler = torch.amp.GradScaler(
|
424 |
+
"cuda",
|
425 |
+
init_scale=2**14 if dtype_16bit == "f16" else 2**40,
|
426 |
+
enabled=is_16bit,
|
427 |
+
growth_factor=1.2,
|
428 |
+
backoff_factor=0.8,
|
429 |
+
growth_interval=500,
|
430 |
+
)
|
431 |
+
track_losses, track_grad = {}, {}
|
432 |
+
system_memory = dict(psutil.virtual_memory()._asdict())["available"] / 2**30
|
433 |
+
cpid_memory = current_process.memory_info()[0] / 2.0**30
|
434 |
+
gpu_mem = (torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0]) / 2**30
|
435 |
+
while True:
|
436 |
+
for j, batches in enumerate(train_loader):
|
437 |
+
system_memory = (
|
438 |
+
0.99 * system_memory
|
439 |
+
+ 0.01 * dict(psutil.virtual_memory()._asdict())["available"] / 2**30
|
440 |
+
)
|
441 |
+
cpid_memory = (
|
442 |
+
0.99 * cpid_memory + 0.01 * current_process.memory_info()[0] / 2.0**30
|
443 |
+
)
|
444 |
+
gpu_mem = (
|
445 |
+
0.99 * gpu_mem
|
446 |
+
+ 0.01
|
447 |
+
* (torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0])
|
448 |
+
/ 2**30
|
449 |
+
)
|
450 |
+
if j % 1000 == 0 and is_main_process():
|
451 |
+
print(f"System information at step {j}")
|
452 |
+
print(f"System-wide RAM available: {system_memory:.2f}GB")
|
453 |
+
print(f"CPU utilization: {psutil.cpu_percent(interval=None)}%")
|
454 |
+
print(f"GPU memory utilized: {gpu_mem:.2f}GB")
|
455 |
+
|
456 |
+
batches["data"] = {
|
457 |
+
k: v.to(model.device, non_blocking=True)
|
458 |
+
for k, v in batches["data"].items()
|
459 |
+
}
|
460 |
+
for idx in range(nsteps_accumulation_gradient):
|
461 |
+
batch = {}
|
462 |
+
batch_slice = slice(idx * batch_chunk, (idx + 1) * batch_chunk)
|
463 |
+
batch["data"] = {k: v[batch_slice] for k, v in batches["data"].items()}
|
464 |
+
batch["img_metas"] = batches["img_metas"][batch_slice]
|
465 |
+
with (
|
466 |
+
model.no_sync()
|
467 |
+
if idx < nsteps_accumulation_gradient - 1
|
468 |
+
else nullcontext()
|
469 |
+
):
|
470 |
+
with context:
|
471 |
+
preds, losses = model(batch["data"], batch["img_metas"])
|
472 |
+
loss = sum(losses["opt"].values())
|
473 |
+
scaler.scale(loss).backward()
|
474 |
+
|
475 |
+
losses_dict = {
|
476 |
+
k: v.detach() for loss in losses.values() for k, v in loss.items()
|
477 |
+
}
|
478 |
+
track_losses.update(
|
479 |
+
{
|
480 |
+
k: track_losses.get(k, 0.0)
|
481 |
+
+ torch.nan_to_num(v, nan=1e5, posinf=1e5, neginf=1e5)
|
482 |
+
for k, v in losses_dict.items()
|
483 |
+
}
|
484 |
+
)
|
485 |
+
ddp_model.loss_history = track_losses
|
486 |
+
|
487 |
+
if clipping is not None:
|
488 |
+
scaler.unscale_(optimizer)
|
489 |
+
grad_norm = clipping_fn(ddp_model.parameters_grad(), clipping)
|
490 |
+
if torch.isfinite(grad_norm):
|
491 |
+
track_losses.update(
|
492 |
+
{"Grad_Norm": track_losses.get("Grad_Norm", 0.0) + grad_norm}
|
493 |
+
)
|
494 |
+
|
495 |
+
# there is a deeper issue, either log/sqrt of negative loss
|
496 |
+
# or the inputs create large values and destroy model weights
|
497 |
+
if is_16bit and scaler.get_scale() < 1:
|
498 |
+
raise ValueError("Scale went less than 1, ISSUE!!!")
|
499 |
+
|
500 |
+
scaler.step(optimizer)
|
501 |
+
scaler.update()
|
502 |
+
|
503 |
+
scheduler_wd.step()
|
504 |
+
scheduler_lr.step()
|
505 |
+
scheduler_betas.step()
|
506 |
+
model.module.step()
|
507 |
+
optimizer.zero_grad(set_to_none=True)
|
508 |
+
if step % EMA_INTERVAL == 0:
|
509 |
+
ema_handle.update()
|
510 |
+
|
511 |
+
if is_main_process() and track_pbar:
|
512 |
+
pbar.update(1)
|
513 |
+
|
514 |
+
step += 1
|
515 |
+
|
516 |
+
# LOGGING
|
517 |
+
if step % 100 == 0 and is_main_process():
|
518 |
+
log_num = min(10, preds["depth"].shape[0])
|
519 |
+
log_train_artifacts(
|
520 |
+
batch["data"]["image"][-log_num:, 0].float(),
|
521 |
+
(
|
522 |
+
batch["data"]["depth"][-log_num:, 0].float()
|
523 |
+
if "depth" in batch["data"]
|
524 |
+
else []
|
525 |
+
),
|
526 |
+
preds["depth"][-log_num:, 0].detach().float(),
|
527 |
+
infos={
|
528 |
+
k: v[-log_num:, 0] for k, v in preds.get("infos", {}).items()
|
529 |
+
},
|
530 |
+
step=step,
|
531 |
+
)
|
532 |
+
|
533 |
+
if step % 50 == 0:
|
534 |
+
track_losses = {
|
535 |
+
k: v / (50 * nsteps_accumulation_gradient)
|
536 |
+
for k, v in track_losses.items()
|
537 |
+
}
|
538 |
+
# grad norm is for every step!
|
539 |
+
track_losses["Grad_Norm"] = (
|
540 |
+
track_losses["Grad_Norm"] * nsteps_accumulation_gradient
|
541 |
+
)
|
542 |
+
track_losses = aggregate_sync_losses(track_losses, device=model.device)
|
543 |
+
if is_main_process():
|
544 |
+
elapsed = int(time() - start)
|
545 |
+
eta = int(elapsed * (n_steps - step) / max(1, step - init_steps))
|
546 |
+
print(
|
547 |
+
f"Step {step}/{n_steps} [{format_seconds(elapsed)}<{format_seconds(eta)}]"
|
548 |
+
)
|
549 |
+
try:
|
550 |
+
wandb.log(
|
551 |
+
{
|
552 |
+
**{f"Train/{k}": v for k, v in track_losses.items()},
|
553 |
+
**{f"Train/lr": scheduler_lr.get()[-1]},
|
554 |
+
**{f"Train/wd": scheduler_wd.get()[-2]},
|
555 |
+
**{f"Train/scale_f16": log2(scaler.get_scale())},
|
556 |
+
},
|
557 |
+
step=step,
|
558 |
+
)
|
559 |
+
except Exception as e:
|
560 |
+
print("Not logging loss because of:", e)
|
561 |
+
if step % 100 == 0:
|
562 |
+
log_loss_dict = {
|
563 |
+
f"Train/{k}": v for k, v in track_losses.items()
|
564 |
+
}
|
565 |
+
print(
|
566 |
+
", ".join(
|
567 |
+
[f"{k}: {v:.5f}" for k, v in log_loss_dict.items()]
|
568 |
+
)
|
569 |
+
)
|
570 |
+
track_losses = {} # reinit every 50 steps, average the current 50 steps
|
571 |
+
|
572 |
+
# Validation
|
573 |
+
is_last_step = step >= config["training"]["n_iters"]
|
574 |
+
is_validation = step % config["training"]["validation_interval"] == 0
|
575 |
+
if is_last_step or is_validation:
|
576 |
+
torch.cuda.empty_cache()
|
577 |
+
barrier()
|
578 |
+
if is_main_process():
|
579 |
+
print(f"Validation at {step}th step...")
|
580 |
+
ddp_model.eval()
|
581 |
+
start_validation = time()
|
582 |
+
with torch.no_grad(), ema_handle.average_parameters():
|
583 |
+
validate(
|
584 |
+
model,
|
585 |
+
test_loaders=val_loaders,
|
586 |
+
step=step,
|
587 |
+
run_id=run_id,
|
588 |
+
idxs=(64, 96, 224, 256), # random
|
589 |
+
context=context_val,
|
590 |
+
)
|
591 |
+
|
592 |
+
if is_main_process():
|
593 |
+
print(f"Elapsed: {format_seconds(int(time() - start_validation))}")
|
594 |
+
ddp_model.train()
|
595 |
+
torch.cuda.empty_cache()
|
596 |
+
|
597 |
+
if step >= config["training"]["n_iters"]:
|
598 |
+
if is_main_process() and track_pbar:
|
599 |
+
pbar.close()
|
600 |
+
wandb.finish(0)
|
601 |
+
dist.destroy_process_group()
|
602 |
+
return 0
|
603 |
+
|
604 |
+
|
605 |
+
if __name__ == "__main__":
|
606 |
+
if "SLURM_PROCID" in os.environ:
|
607 |
+
os.environ["TRITON_CACHE_DIR"] = "/tmp"
|
608 |
+
# Arguments
|
609 |
+
parser = argparse.ArgumentParser(
|
610 |
+
description="Training script", conflict_handler="resolve"
|
611 |
+
)
|
612 |
+
parser.add_argument("--config-file", type=str, required=True)
|
613 |
+
parser.add_argument("--master-port", type=str)
|
614 |
+
parser.add_argument("--distributed", action="store_true")
|
615 |
+
parser.add_argument("--local_rank", type=int, default=0)
|
616 |
+
|
617 |
+
args = parser.parse_args()
|
618 |
+
with open(args.config_file, "r") as f:
|
619 |
+
config = json.load(f)
|
620 |
+
|
621 |
+
deterministic = config["generic"].get("deterministic", True)
|
622 |
+
torch.backends.cudnn.deterministic = deterministic
|
623 |
+
torch.backends.cudnn.benchmark = not deterministic
|
624 |
+
|
625 |
+
torch.backends.cudnn.allow_tf32 = True
|
626 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
627 |
+
torch.set_float32_matmul_precision("high")
|
628 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False)
|
629 |
+
torch.set_num_threads(1)
|
630 |
+
main_worker(config, args)
|
unik3d/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .models import UniK3D
|
unik3d/datasets/_2d3ds.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from unik3d.datasets.pipelines import Compose, PanoCrop, PanoRoll
|
6 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
7 |
+
|
8 |
+
|
9 |
+
class d2D3DS(SequenceDataset):
|
10 |
+
min_depth = 0.01
|
11 |
+
max_depth = 10.0
|
12 |
+
depth_scale = 512.0
|
13 |
+
test_split = "train.txt"
|
14 |
+
train_split = "train.txt"
|
15 |
+
sequences_file = "sequences.json"
|
16 |
+
hdf5_paths = [f"2D3DS.hdf5"]
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
image_shape: tuple[int, int],
|
21 |
+
split_file: str,
|
22 |
+
test_mode: bool,
|
23 |
+
normalize: bool,
|
24 |
+
augmentations_db: dict[str, Any],
|
25 |
+
resize_method: str,
|
26 |
+
mini: float = 1.0,
|
27 |
+
num_frames: int = 1,
|
28 |
+
benchmark: bool = False,
|
29 |
+
decode_fields: list[str] = ["image", "depth"],
|
30 |
+
inplace_fields: list[str] = ["cam2w", "camera_params"],
|
31 |
+
**kwargs,
|
32 |
+
) -> None:
|
33 |
+
super().__init__(
|
34 |
+
image_shape=image_shape,
|
35 |
+
split_file=split_file,
|
36 |
+
test_mode=test_mode,
|
37 |
+
benchmark=benchmark,
|
38 |
+
normalize=normalize,
|
39 |
+
augmentations_db=augmentations_db,
|
40 |
+
resize_method=resize_method,
|
41 |
+
mini=mini,
|
42 |
+
num_frames=num_frames,
|
43 |
+
decode_fields=decode_fields,
|
44 |
+
inplace_fields=inplace_fields,
|
45 |
+
**kwargs,
|
46 |
+
)
|
47 |
+
self.resizer = Compose(
|
48 |
+
[PanoCrop(), PanoRoll(test_mode=test_mode), self.resizer]
|
49 |
+
)
|
50 |
+
|
51 |
+
def preprocess(self, results):
|
52 |
+
self.resizer.ctx = None
|
53 |
+
if self.test_mode:
|
54 |
+
for i, seq in enumerate(results["sequence_fields"]):
|
55 |
+
results[seq]["points"] = results[seq]["camera"].reconstruct(
|
56 |
+
results[seq]["depth"]
|
57 |
+
)
|
58 |
+
results[seq]["depth"] = results[seq]["points"][:, -1:]
|
59 |
+
results[seq]["gt_fields"].add("points")
|
60 |
+
return super().preprocess(results)
|
61 |
+
|
62 |
+
def pre_pipeline(self, results):
|
63 |
+
results = super().pre_pipeline(results)
|
64 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
65 |
+
results["synthetic"] = [False] * self.num_frames * self.num_copies
|
66 |
+
results["quality"] = [1] * self.num_frames * self.num_copies
|
67 |
+
return results
|
unik3d/datasets/_4dor.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class d4DOR(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 10.0
|
9 |
+
depth_scale = 1000.0
|
10 |
+
default_fps = 10
|
11 |
+
test_split = "train.txt"
|
12 |
+
train_split = "train.txt"
|
13 |
+
sequences_file = "sequences.json"
|
14 |
+
hdf5_paths = ["4DOR.hdf5"]
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
image_shape: tuple[int, int],
|
19 |
+
split_file: str,
|
20 |
+
test_mode: bool,
|
21 |
+
normalize: bool,
|
22 |
+
augmentations_db: dict[str, Any],
|
23 |
+
resize_method: str,
|
24 |
+
mini: float = 1.0,
|
25 |
+
num_frames: int = 1,
|
26 |
+
benchmark: bool = False,
|
27 |
+
decode_fields: list[str] = ["image", "depth"],
|
28 |
+
inplace_fields: list[str] = ["camera_params", "cam2w"],
|
29 |
+
**kwargs,
|
30 |
+
) -> None:
|
31 |
+
super().__init__(
|
32 |
+
image_shape=image_shape,
|
33 |
+
split_file=split_file,
|
34 |
+
test_mode=test_mode,
|
35 |
+
benchmark=benchmark,
|
36 |
+
normalize=normalize,
|
37 |
+
augmentations_db=augmentations_db,
|
38 |
+
resize_method=resize_method,
|
39 |
+
mini=mini,
|
40 |
+
num_frames=num_frames,
|
41 |
+
decode_fields=decode_fields,
|
42 |
+
inplace_fields=inplace_fields,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
|
46 |
+
def pre_pipeline(self, results):
|
47 |
+
results = super().pre_pipeline(results)
|
48 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
49 |
+
results["synthetic"] = [False] * self.num_frames * self.num_copies
|
50 |
+
results["si"] = [False] * self.num_frames * self.num_copies
|
51 |
+
results["quality"] = [2] * self.num_frames * self.num_copies
|
52 |
+
return results
|
unik3d/datasets/__init__.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._2d3ds import d2D3DS
|
2 |
+
from ._4dor import d4DOR
|
3 |
+
from .a2d2 import A2D2
|
4 |
+
from .adt import ADT
|
5 |
+
from .aimotive import aiMotive
|
6 |
+
from .argoverse import Argoverse
|
7 |
+
from .argoverse2 import Argoverse2
|
8 |
+
from .arkit import ARKit
|
9 |
+
from .ase import ASE
|
10 |
+
from .base_dataset import BaseDataset
|
11 |
+
from .bdd import BDD
|
12 |
+
from .bedlam import BEDLAM
|
13 |
+
from .behave import Behave
|
14 |
+
from .blendedmvg import BlendedMVG
|
15 |
+
from .cityscape import Cityscape
|
16 |
+
from .ddad import DDAD
|
17 |
+
from .deep360 import Deep360
|
18 |
+
from .dense import DENSE
|
19 |
+
from .diml import DIML
|
20 |
+
from .diode import DiodeIndoor, DiodeIndoor_F
|
21 |
+
from .dl3dv import DL3DV
|
22 |
+
from .driving_stereo import DrivingStereo
|
23 |
+
from .dtu_rmvd import DTURMVD
|
24 |
+
from .dummy import Dummy
|
25 |
+
from .dynamic_replica import DynReplica
|
26 |
+
from .eden import EDEN
|
27 |
+
from .eth3d import ETH3D, ETH3D_F, ETH3DRMVD
|
28 |
+
from .facedepth import FaceDepth
|
29 |
+
from .flsea import FLSea
|
30 |
+
from .futurehouse import FutureHouse
|
31 |
+
from .gibson import Gibson
|
32 |
+
from .hammer import HAMMER
|
33 |
+
from .hm3d import HM3D
|
34 |
+
from .hoi4d import HOI4D
|
35 |
+
from .hypersim import HyperSim
|
36 |
+
from .ibims import IBims, IBims_F
|
37 |
+
from .ken_burns import KenBurns
|
38 |
+
from .kitti import KITTI, KITTIRMVD, KITTIBenchmark
|
39 |
+
from .kitti360 import KITTI360
|
40 |
+
from .lyft import Lyft
|
41 |
+
from .mapillary import Mapillary
|
42 |
+
from .matrix_city import MatrixCity
|
43 |
+
from .matterport3d import Matterport3D
|
44 |
+
from .megadepth import MegaDepth
|
45 |
+
from .megadepth_s import MegaDepthS
|
46 |
+
from .midair import MidAir
|
47 |
+
from .mip import MIP
|
48 |
+
from .ms2 import MS2
|
49 |
+
from .mvimgnet import MVImgNet
|
50 |
+
from .mvsynth import MVSynth
|
51 |
+
from .nerds360 import NeRDS360
|
52 |
+
from .niantic_mapfree import NianticMapFree
|
53 |
+
from .nuscenes import Nuscenes
|
54 |
+
from .nyuv2 import NYUv2Depth
|
55 |
+
from .point_odyssey import PointOdyssey
|
56 |
+
from .proteus import Proteus
|
57 |
+
from .samplers import (DistributedSamplerNoDuplicate,
|
58 |
+
DistributedSamplerWrapper, ShardedInfiniteSampler)
|
59 |
+
from .scannet import ScanNet
|
60 |
+
from .scannetpp import ScanNetpp, ScanNetpp_F
|
61 |
+
from .sintel import Sintel
|
62 |
+
from .sunrgbd import SUNRGBD
|
63 |
+
from .synscapes import Synscapes
|
64 |
+
from .tartanair import TartanAir
|
65 |
+
from .taskonomy import Taskonomy
|
66 |
+
from .tat_rmvd import TATRMVD
|
67 |
+
from .theo import Theo
|
68 |
+
from .unrealstereo4k import UnrealStereo4K
|
69 |
+
from .urbansyn import UrbanSyn
|
70 |
+
from .utils import ConcatDataset, collate_fn, get_weights
|
71 |
+
from .vkitti import VKITTI
|
72 |
+
from .void import VOID
|
73 |
+
from .waymo import Waymo
|
74 |
+
from .wildrgbd import WildRGBD
|
75 |
+
|
76 |
+
__all__ = [
|
77 |
+
"Dummy",
|
78 |
+
"BaseDataset",
|
79 |
+
"get_weights" "DistributedSamplerNoDuplicate",
|
80 |
+
"ShardedInfiniteSampler",
|
81 |
+
"DistributedSamplerWrapper",
|
82 |
+
"ConcatDataset",
|
83 |
+
"PairDataset",
|
84 |
+
"collate_fn",
|
85 |
+
# additional, do not count
|
86 |
+
"WaymoImage",
|
87 |
+
"MegaDepth",
|
88 |
+
"COCO2017",
|
89 |
+
"ImageNet",
|
90 |
+
"OASISv2",
|
91 |
+
# image based
|
92 |
+
"Argoverse",
|
93 |
+
"DDAD",
|
94 |
+
"IBims",
|
95 |
+
"NYUv2Depth",
|
96 |
+
"DrivingStereo",
|
97 |
+
"VOID",
|
98 |
+
"Mapillary",
|
99 |
+
"ScanNet",
|
100 |
+
"Taskonomy",
|
101 |
+
"BDD",
|
102 |
+
"A2D2",
|
103 |
+
"Nuscenes",
|
104 |
+
"SUNRGBD",
|
105 |
+
"ETH3D",
|
106 |
+
"HAMMER",
|
107 |
+
"Cityscape",
|
108 |
+
"KITTI",
|
109 |
+
"DENSE",
|
110 |
+
"DIML",
|
111 |
+
"DiodeIndoor",
|
112 |
+
"FLSea",
|
113 |
+
"ARKitScenes",
|
114 |
+
"Lyft",
|
115 |
+
"HyperSim",
|
116 |
+
"KenBurns",
|
117 |
+
"HRWSI",
|
118 |
+
"UrbanSyn",
|
119 |
+
"Synscapes",
|
120 |
+
"Gibson",
|
121 |
+
"Matterport3D",
|
122 |
+
"_2D3DS",
|
123 |
+
# sequence based
|
124 |
+
"TartanAir",
|
125 |
+
"WildRGBD",
|
126 |
+
"ScanNetS",
|
127 |
+
"ScanNetpp",
|
128 |
+
"MVImgNet",
|
129 |
+
"NianticMapFree",
|
130 |
+
"DL3DV",
|
131 |
+
"PointOdyssey",
|
132 |
+
"KITTIMulti",
|
133 |
+
"Waymo",
|
134 |
+
"Argoverse2",
|
135 |
+
"UnrealStereo4K",
|
136 |
+
"MatrixCity",
|
137 |
+
"HM3D",
|
138 |
+
"MVSynth",
|
139 |
+
"EDEN",
|
140 |
+
# sequence based, but not usable for seq, only image
|
141 |
+
"BEDLAM",
|
142 |
+
"NeRDS360",
|
143 |
+
"BlendedMVG",
|
144 |
+
"DynReplica",
|
145 |
+
"ARKitS",
|
146 |
+
"Sintel",
|
147 |
+
"VKITTI",
|
148 |
+
"MegaDepthS",
|
149 |
+
# benchmarks
|
150 |
+
"KITTIBenchmark",
|
151 |
+
"ETH3DRMVD",
|
152 |
+
"DTURMVD",
|
153 |
+
"KITTIRMVD",
|
154 |
+
"TATRMVD",
|
155 |
+
"DiodeIndoor_F",
|
156 |
+
"IBims_F",
|
157 |
+
"ETH3D_F",
|
158 |
+
"KITTI360",
|
159 |
+
"ScanNetpp_F",
|
160 |
+
"ADT",
|
161 |
+
]
|
unik3d/datasets/a2d2.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
9 |
+
from unik3d.datasets.utils import DatasetFromList
|
10 |
+
|
11 |
+
|
12 |
+
class A2D2(ImageDataset):
|
13 |
+
min_depth = 0.01
|
14 |
+
max_depth = 120.0
|
15 |
+
depth_scale = 256.0
|
16 |
+
train_split = "train_clean.txt"
|
17 |
+
intrisics_file = "intrinsics.json"
|
18 |
+
hdf5_paths = ["a2d2.hdf5"]
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
image_shape,
|
23 |
+
split_file,
|
24 |
+
test_mode,
|
25 |
+
crop=None,
|
26 |
+
benchmark=False,
|
27 |
+
augmentations_db={},
|
28 |
+
normalize=True,
|
29 |
+
resize_method="hard",
|
30 |
+
mini=1.0,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
image_shape=image_shape,
|
35 |
+
split_file=split_file,
|
36 |
+
test_mode=test_mode,
|
37 |
+
benchmark=benchmark,
|
38 |
+
normalize=normalize,
|
39 |
+
augmentations_db=augmentations_db,
|
40 |
+
resize_method=resize_method,
|
41 |
+
mini=mini,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
self.test_mode = test_mode
|
45 |
+
self.load_dataset()
|
46 |
+
|
47 |
+
def load_dataset(self):
|
48 |
+
h5file = h5py.File(
|
49 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
50 |
+
"r",
|
51 |
+
libver="latest",
|
52 |
+
swmr=True,
|
53 |
+
)
|
54 |
+
txt_file = np.array(h5file[self.split_file])
|
55 |
+
txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1
|
56 |
+
intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii")
|
57 |
+
intrinsics = json.loads(intrinsics)
|
58 |
+
h5file.close()
|
59 |
+
dataset = []
|
60 |
+
for line in txt_string.split("\n"):
|
61 |
+
image_filename, depth_filename = line.strip().split(" ")
|
62 |
+
intrinsics_val = torch.tensor(
|
63 |
+
intrinsics[os.path.join(*image_filename.split("/")[:2])]
|
64 |
+
).squeeze()[:, :3]
|
65 |
+
sample = [image_filename, depth_filename, intrinsics_val]
|
66 |
+
dataset.append(sample)
|
67 |
+
|
68 |
+
if not self.test_mode:
|
69 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
70 |
+
|
71 |
+
self.dataset = DatasetFromList(dataset)
|
72 |
+
self.log_load_dataset()
|
73 |
+
|
74 |
+
def pre_pipeline(self, results):
|
75 |
+
results = super().pre_pipeline(results)
|
76 |
+
results["dense"] = [False] * self.num_copies
|
77 |
+
results["quality"] = [1] * self.num_copies
|
78 |
+
return results
|
unik3d/datasets/adt.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
6 |
+
|
7 |
+
|
8 |
+
class ADT(SequenceDataset):
|
9 |
+
min_depth = 0.01
|
10 |
+
max_depth = 20.0
|
11 |
+
depth_scale = 1000.0
|
12 |
+
test_split = "val.txt"
|
13 |
+
train_split = "train.txt"
|
14 |
+
sequences_file = "sequences.json"
|
15 |
+
hdf5_paths = [f"ADT.hdf5"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
image_shape: tuple[int, int],
|
20 |
+
split_file: str,
|
21 |
+
test_mode: bool,
|
22 |
+
normalize: bool,
|
23 |
+
augmentations_db: dict[str, Any],
|
24 |
+
resize_method: str,
|
25 |
+
mini: float = 1.0,
|
26 |
+
num_frames: int = 1,
|
27 |
+
benchmark: bool = False,
|
28 |
+
decode_fields: list[str] = ["image", "depth"],
|
29 |
+
inplace_fields: list[str] = ["camera_params", "cam2w"],
|
30 |
+
**kwargs,
|
31 |
+
) -> None:
|
32 |
+
super().__init__(
|
33 |
+
image_shape=image_shape,
|
34 |
+
split_file=split_file,
|
35 |
+
test_mode=test_mode,
|
36 |
+
benchmark=benchmark,
|
37 |
+
normalize=normalize,
|
38 |
+
augmentations_db=augmentations_db,
|
39 |
+
resize_method=resize_method,
|
40 |
+
mini=mini,
|
41 |
+
num_frames=num_frames,
|
42 |
+
decode_fields=decode_fields, # if not test_mode else [*decode_fields, "points"],
|
43 |
+
inplace_fields=inplace_fields,
|
44 |
+
**kwargs,
|
45 |
+
)
|
46 |
+
|
47 |
+
def preprocess(self, results):
|
48 |
+
self.resizer.ctx = None
|
49 |
+
for i, seq in enumerate(results["sequence_fields"]):
|
50 |
+
# Create a mask where the distance from the center is less than H/2
|
51 |
+
H, W = results[seq]["image"].shape[-2:]
|
52 |
+
x = torch.linspace(-W / 2 - 0.5, W / 2 + 0.5, W)
|
53 |
+
y = torch.linspace(-H / 2 - 0.5, H / 2 + 0.5, H)
|
54 |
+
xv, yv = torch.meshgrid(x, y, indexing="xy")
|
55 |
+
distance_from_center = torch.sqrt(xv**2 + yv**2).reshape(1, 1, H, W)
|
56 |
+
results[seq]["validity_mask"] = distance_from_center < (H / 2) + 20
|
57 |
+
results[seq]["depth_mask"] = results[seq]["validity_mask"].clone()
|
58 |
+
results[seq]["mask_fields"].add("depth_mask")
|
59 |
+
results[seq]["mask_fields"].add("validity_mask")
|
60 |
+
|
61 |
+
return super().preprocess(results)
|
62 |
+
|
63 |
+
def pre_pipeline(self, results):
|
64 |
+
results = super().pre_pipeline(results)
|
65 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
66 |
+
results["synthetic"] = [True] * self.num_frames * self.num_copies
|
67 |
+
results["quality"] = [0] * self.num_frames * self.num_copies
|
68 |
+
return results
|
unik3d/datasets/aimotive.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class aiMotive(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 100.0
|
9 |
+
depth_scale = 256.0
|
10 |
+
default_fps = 10
|
11 |
+
test_split = "train.txt"
|
12 |
+
train_split = "train.txt"
|
13 |
+
sequences_file = "sequences.json"
|
14 |
+
hdf5_paths = ["aiMotive.hdf5"]
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
image_shape: tuple[int, int],
|
19 |
+
split_file: str,
|
20 |
+
test_mode: bool,
|
21 |
+
normalize: bool,
|
22 |
+
augmentations_db: dict[str, Any],
|
23 |
+
resize_method: str,
|
24 |
+
mini: float = 1.0,
|
25 |
+
num_frames: int = 1,
|
26 |
+
benchmark: bool = False,
|
27 |
+
decode_fields: list[str] = ["image", "depth"],
|
28 |
+
inplace_fields: list[str] = ["camera_params", "cam2w"],
|
29 |
+
**kwargs,
|
30 |
+
) -> None:
|
31 |
+
super().__init__(
|
32 |
+
image_shape=image_shape,
|
33 |
+
split_file=split_file,
|
34 |
+
test_mode=test_mode,
|
35 |
+
benchmark=benchmark,
|
36 |
+
normalize=normalize,
|
37 |
+
augmentations_db=augmentations_db,
|
38 |
+
resize_method=resize_method,
|
39 |
+
mini=mini,
|
40 |
+
num_frames=num_frames,
|
41 |
+
decode_fields=decode_fields,
|
42 |
+
inplace_fields=inplace_fields,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
|
46 |
+
def pre_pipeline(self, results):
|
47 |
+
results = super().pre_pipeline(results)
|
48 |
+
results["dense"] = [False] * self.num_frames * self.num_copies
|
49 |
+
results["synthetic"] = [False] * self.num_frames * self.num_copies
|
50 |
+
results["quality"] = [2] * self.num_frames * self.num_copies
|
51 |
+
return results
|
unik3d/datasets/argoverse.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
9 |
+
from unik3d.datasets.utils import DatasetFromList
|
10 |
+
|
11 |
+
|
12 |
+
class Argoverse(ImageDataset):
|
13 |
+
min_depth = 0.05
|
14 |
+
max_depth = 120.0
|
15 |
+
depth_scale = 256.0
|
16 |
+
test_split = "argo_val.txt"
|
17 |
+
train_split = "argo_train.txt"
|
18 |
+
intrisics_file = "argo_intrinsics.json"
|
19 |
+
hdf5_paths = ["argoverse11.hdf5"]
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
image_shape,
|
24 |
+
split_file,
|
25 |
+
test_mode,
|
26 |
+
crop=None,
|
27 |
+
benchmark=False,
|
28 |
+
augmentations_db={},
|
29 |
+
normalize=True,
|
30 |
+
resize_method="hard",
|
31 |
+
mini=1.0,
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
super().__init__(
|
35 |
+
image_shape=image_shape,
|
36 |
+
split_file=split_file,
|
37 |
+
test_mode=test_mode,
|
38 |
+
benchmark=benchmark,
|
39 |
+
normalize=normalize,
|
40 |
+
augmentations_db=augmentations_db,
|
41 |
+
resize_method=resize_method,
|
42 |
+
mini=mini,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
self.test_mode = test_mode
|
46 |
+
|
47 |
+
self.crop = crop
|
48 |
+
self.load_dataset()
|
49 |
+
|
50 |
+
def load_dataset(self):
|
51 |
+
h5file = h5py.File(
|
52 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
53 |
+
"r",
|
54 |
+
libver="latest",
|
55 |
+
swmr=True,
|
56 |
+
)
|
57 |
+
txt_file = np.array(h5file[self.split_file])
|
58 |
+
txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1
|
59 |
+
intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii")
|
60 |
+
intrinsics = json.loads(intrinsics)
|
61 |
+
h5file.close()
|
62 |
+
dataset = []
|
63 |
+
for line in txt_string.split("\n"):
|
64 |
+
image_filename, depth_filename = line.strip().split(" ")
|
65 |
+
intrinsics_val = torch.tensor(intrinsics[image_filename]).squeeze()[:, :3]
|
66 |
+
sample = [image_filename, depth_filename, intrinsics_val]
|
67 |
+
dataset.append(sample)
|
68 |
+
|
69 |
+
if not self.test_mode:
|
70 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
71 |
+
|
72 |
+
self.dataset = DatasetFromList(dataset)
|
73 |
+
self.log_load_dataset()
|
unik3d/datasets/argoverse2.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class Argoverse2(SequenceDataset):
|
7 |
+
min_depth = 0.05
|
8 |
+
max_depth = 120.0
|
9 |
+
depth_scale = 256.0
|
10 |
+
test_split = "val.txt"
|
11 |
+
train_split = "train.txt"
|
12 |
+
sequences_file = "sequences_clean.json"
|
13 |
+
hdf5_paths = [f"AV2_viz.hdf5"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
image_shape: tuple[int, int],
|
18 |
+
split_file: str,
|
19 |
+
test_mode: bool,
|
20 |
+
normalize: bool,
|
21 |
+
augmentations_db: dict[str, Any],
|
22 |
+
resize_method: str,
|
23 |
+
mini: float = 1.0,
|
24 |
+
num_frames: int = 1,
|
25 |
+
benchmark: bool = False,
|
26 |
+
decode_fields: list[str] = ["image", "depth"],
|
27 |
+
inplace_fields: list[str] = ["K", "cam2w"],
|
28 |
+
**kwargs,
|
29 |
+
) -> None:
|
30 |
+
super().__init__(
|
31 |
+
image_shape=image_shape,
|
32 |
+
split_file=split_file,
|
33 |
+
test_mode=test_mode,
|
34 |
+
benchmark=benchmark,
|
35 |
+
normalize=normalize,
|
36 |
+
augmentations_db=augmentations_db,
|
37 |
+
resize_method=resize_method,
|
38 |
+
mini=mini,
|
39 |
+
num_frames=num_frames,
|
40 |
+
decode_fields=decode_fields,
|
41 |
+
inplace_fields=inplace_fields,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
45 |
+
def pre_pipeline(self, results):
|
46 |
+
results = super().pre_pipeline(results)
|
47 |
+
results["dense"] = [False] * self.num_frames * self.num_copies
|
48 |
+
results["quality"] = [1] * self.num_frames * self.num_copies
|
49 |
+
return results
|
unik3d/datasets/arkit.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class ARKit(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 10.0
|
9 |
+
depth_scale = 1000.0
|
10 |
+
test_split = "Training.txt"
|
11 |
+
train_split = "Training.txt"
|
12 |
+
sequences_file = "sequences.json"
|
13 |
+
hdf5_paths = ["ARKitS.hdf5"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
image_shape: tuple[int, int],
|
18 |
+
split_file: str,
|
19 |
+
test_mode: bool,
|
20 |
+
normalize: bool,
|
21 |
+
augmentations_db: dict[str, Any],
|
22 |
+
resize_method: str,
|
23 |
+
mini: float = 1.0,
|
24 |
+
num_frames: int = 1,
|
25 |
+
benchmark: bool = False,
|
26 |
+
decode_fields: list[str] = ["image", "depth"],
|
27 |
+
inplace_fields: list[str] = ["K", "cam2w"],
|
28 |
+
**kwargs,
|
29 |
+
) -> None:
|
30 |
+
super().__init__(
|
31 |
+
image_shape=image_shape,
|
32 |
+
split_file=split_file,
|
33 |
+
test_mode=test_mode,
|
34 |
+
benchmark=benchmark,
|
35 |
+
normalize=normalize,
|
36 |
+
augmentations_db=augmentations_db,
|
37 |
+
resize_method=resize_method,
|
38 |
+
mini=mini,
|
39 |
+
num_frames=num_frames,
|
40 |
+
decode_fields=decode_fields,
|
41 |
+
inplace_fields=inplace_fields,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
45 |
+
def pre_pipeline(self, results):
|
46 |
+
results = super().pre_pipeline(results)
|
47 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
48 |
+
results["quality"] = [2] * self.num_frames * self.num_copies
|
49 |
+
return results
|
unik3d/datasets/ase.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
6 |
+
|
7 |
+
|
8 |
+
class ASE(SequenceDataset):
|
9 |
+
min_depth = 0.01
|
10 |
+
max_depth = 20.0
|
11 |
+
depth_scale = 1000.0
|
12 |
+
test_split = "val.txt"
|
13 |
+
train_split = "train.txt"
|
14 |
+
sequences_file = "sequences.json"
|
15 |
+
hdf5_paths = [f"ASE.hdf5"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
image_shape: tuple[int, int],
|
20 |
+
split_file: str,
|
21 |
+
test_mode: bool,
|
22 |
+
normalize: bool,
|
23 |
+
augmentations_db: dict[str, Any],
|
24 |
+
resize_method: str,
|
25 |
+
mini: float = 1.0,
|
26 |
+
num_frames: int = 1,
|
27 |
+
benchmark: bool = False,
|
28 |
+
decode_fields: list[str] = ["image", "depth"],
|
29 |
+
inplace_fields: list[str] = ["camera_params", "cam2w"],
|
30 |
+
**kwargs,
|
31 |
+
) -> None:
|
32 |
+
super().__init__(
|
33 |
+
image_shape=image_shape,
|
34 |
+
split_file=split_file,
|
35 |
+
test_mode=test_mode,
|
36 |
+
benchmark=benchmark,
|
37 |
+
normalize=normalize,
|
38 |
+
augmentations_db=augmentations_db,
|
39 |
+
resize_method=resize_method,
|
40 |
+
mini=mini,
|
41 |
+
num_frames=num_frames,
|
42 |
+
decode_fields=decode_fields,
|
43 |
+
inplace_fields=inplace_fields,
|
44 |
+
**kwargs,
|
45 |
+
)
|
46 |
+
|
47 |
+
def preprocess(self, results):
|
48 |
+
self.resizer.ctx = None
|
49 |
+
for i, seq in enumerate(results["sequence_fields"]):
|
50 |
+
# Create a mask where the distance from the center is less than H/2
|
51 |
+
H, W = results[seq]["image"].shape[-2:]
|
52 |
+
x = torch.linspace(-W / 2 - 0.5, W / 2 + 0.5, W)
|
53 |
+
y = torch.linspace(-H / 2 - 0.5, H / 2 + 0.5, H)
|
54 |
+
xv, yv = torch.meshgrid(x, y, indexing="xy")
|
55 |
+
distance_from_center = torch.sqrt(xv**2 + yv**2).reshape(1, 1, H, W)
|
56 |
+
results[seq]["validity_mask"] = distance_from_center < (H / 2) + 20
|
57 |
+
results[seq]["mask_fields"].add("validity_mask")
|
58 |
+
|
59 |
+
return super().preprocess(results)
|
60 |
+
|
61 |
+
def pre_pipeline(self, results):
|
62 |
+
results = super().pre_pipeline(results)
|
63 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
64 |
+
results["synthetic"] = [True] * self.num_frames * self.num_copies
|
65 |
+
results["quality"] = [0] * self.num_frames * self.num_copies
|
66 |
+
return results
|
unik3d/datasets/base_dataset.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from abc import abstractmethod
|
3 |
+
from copy import deepcopy
|
4 |
+
from math import ceil, log
|
5 |
+
from typing import Any, Dict, Tuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
|
11 |
+
import unik3d.datasets.pipelines as pipelines
|
12 |
+
from unik3d.utils import (eval_3d, eval_depth, identity, is_main_process,
|
13 |
+
recursive_index, sync_tensor_across_gpus)
|
14 |
+
from unik3d.utils.constants import (IMAGENET_DATASET_MEAN,
|
15 |
+
IMAGENET_DATASET_STD, OPENAI_DATASET_MEAN,
|
16 |
+
OPENAI_DATASET_STD)
|
17 |
+
|
18 |
+
|
19 |
+
class BaseDataset(Dataset):
|
20 |
+
min_depth = 0.01
|
21 |
+
max_depth = 1000.0
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
image_shape: Tuple[int, int],
|
26 |
+
split_file: str,
|
27 |
+
test_mode: bool,
|
28 |
+
normalize: bool,
|
29 |
+
augmentations_db: Dict[str, Any],
|
30 |
+
shape_constraints: Dict[str, Any],
|
31 |
+
resize_method: str,
|
32 |
+
mini: float,
|
33 |
+
num_copies: int = 1,
|
34 |
+
**kwargs,
|
35 |
+
) -> None:
|
36 |
+
super().__init__()
|
37 |
+
assert normalize in [None, "imagenet", "openai"]
|
38 |
+
|
39 |
+
self.split_file = split_file
|
40 |
+
self.test_mode = test_mode
|
41 |
+
self.data_root = os.environ["DATAROOT"]
|
42 |
+
self.image_shape = image_shape
|
43 |
+
self.resize_method = resize_method
|
44 |
+
self.mini = mini
|
45 |
+
self.num_frames = 1
|
46 |
+
self.num_copies = num_copies
|
47 |
+
self.metrics_store = {}
|
48 |
+
self.metrics_count = {}
|
49 |
+
|
50 |
+
if normalize == "imagenet":
|
51 |
+
self.normalization_stats = {
|
52 |
+
"mean": torch.tensor(IMAGENET_DATASET_MEAN),
|
53 |
+
"std": torch.tensor(IMAGENET_DATASET_STD),
|
54 |
+
}
|
55 |
+
elif normalize == "openai":
|
56 |
+
self.normalization_stats = {
|
57 |
+
"mean": torch.tensor(OPENAI_DATASET_MEAN),
|
58 |
+
"std": torch.tensor(OPENAI_DATASET_STD),
|
59 |
+
}
|
60 |
+
else:
|
61 |
+
self.normalization_stats = {
|
62 |
+
"mean": torch.tensor([0.0, 0.0, 0.0]),
|
63 |
+
"std": torch.tensor([1.0, 1.0, 1.0]),
|
64 |
+
}
|
65 |
+
|
66 |
+
for k, v in augmentations_db.items():
|
67 |
+
setattr(self, k, v)
|
68 |
+
self.shape_constraints = shape_constraints
|
69 |
+
if not self.test_mode:
|
70 |
+
self._augmentation_space()
|
71 |
+
|
72 |
+
self.masker = pipelines.AnnotationMask(
|
73 |
+
min_value=0.0,
|
74 |
+
max_value=self.max_depth if test_mode else None,
|
75 |
+
custom_fn=identity,
|
76 |
+
)
|
77 |
+
self.filler = pipelines.RandomFiller(test_mode=test_mode)
|
78 |
+
|
79 |
+
shape_mult = self.shape_constraints["shape_mult"]
|
80 |
+
self.image_shape = [
|
81 |
+
ceil(self.image_shape[0] / shape_mult) * shape_mult,
|
82 |
+
ceil(self.image_shape[1] / shape_mult) * shape_mult,
|
83 |
+
]
|
84 |
+
self.resizer = pipelines.ContextCrop(
|
85 |
+
image_shape=self.image_shape,
|
86 |
+
train_ctx_range=(1.0 / self.random_scale, 1.0 * self.random_scale),
|
87 |
+
test_min_ctx=self.test_context,
|
88 |
+
keep_original=test_mode,
|
89 |
+
shape_constraints=self.shape_constraints,
|
90 |
+
)
|
91 |
+
|
92 |
+
self.collecter = pipelines.Collect(
|
93 |
+
keys=["image_fields", "mask_fields", "gt_fields", "camera_fields"]
|
94 |
+
)
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.dataset)
|
98 |
+
|
99 |
+
def pack_batch(self, results):
|
100 |
+
results["paddings"] = [
|
101 |
+
results[x]["paddings"][0] for x in results["sequence_fields"]
|
102 |
+
]
|
103 |
+
for fields_name in [
|
104 |
+
"image_fields",
|
105 |
+
"gt_fields",
|
106 |
+
"mask_fields",
|
107 |
+
"camera_fields",
|
108 |
+
]:
|
109 |
+
fields = results.get(fields_name)
|
110 |
+
packed = {
|
111 |
+
field: torch.cat(
|
112 |
+
[results[seq][field] for seq in results["sequence_fields"]]
|
113 |
+
)
|
114 |
+
for field in fields
|
115 |
+
}
|
116 |
+
results.update(packed)
|
117 |
+
return results
|
118 |
+
|
119 |
+
def unpack_batch(self, results):
|
120 |
+
for fields_name in [
|
121 |
+
"image_fields",
|
122 |
+
"gt_fields",
|
123 |
+
"mask_fields",
|
124 |
+
"camera_fields",
|
125 |
+
]:
|
126 |
+
fields = results.get(fields_name)
|
127 |
+
unpacked = {
|
128 |
+
field: {
|
129 |
+
seq: results[field][idx : idx + 1]
|
130 |
+
for idx, seq in enumerate(results["sequence_fields"])
|
131 |
+
}
|
132 |
+
for field in fields
|
133 |
+
}
|
134 |
+
results.update(unpacked)
|
135 |
+
return results
|
136 |
+
|
137 |
+
def _augmentation_space(self):
|
138 |
+
self.augmentations_dict = {
|
139 |
+
"Flip": pipelines.RandomFlip(prob=self.flip_p),
|
140 |
+
"Jitter": pipelines.RandomColorJitter(
|
141 |
+
(-self.random_jitter, self.random_jitter), prob=self.jitter_p
|
142 |
+
),
|
143 |
+
"Gamma": pipelines.RandomGamma(
|
144 |
+
(-self.random_gamma, self.random_gamma), prob=self.gamma_p
|
145 |
+
),
|
146 |
+
"Blur": pipelines.GaussianBlur(
|
147 |
+
kernel_size=13, sigma=(0.1, self.random_blur), prob=self.blur_p
|
148 |
+
),
|
149 |
+
"Grayscale": pipelines.RandomGrayscale(prob=self.grayscale_p),
|
150 |
+
}
|
151 |
+
|
152 |
+
def augment(self, results):
|
153 |
+
for name, aug in self.augmentations_dict.items():
|
154 |
+
results = aug(results)
|
155 |
+
return results
|
156 |
+
|
157 |
+
def prepare_depth_eval(self, inputs, preds):
|
158 |
+
new_preds = {}
|
159 |
+
keyframe_idx = getattr(self, "keyframe_idx", None)
|
160 |
+
slice_idx = slice(
|
161 |
+
keyframe_idx, keyframe_idx + 1 if keyframe_idx is not None else None
|
162 |
+
)
|
163 |
+
new_gts = inputs["depth"][slice_idx]
|
164 |
+
new_masks = inputs["depth_mask"][slice_idx].bool()
|
165 |
+
for key, val in preds.items():
|
166 |
+
if "depth" in key:
|
167 |
+
new_preds[key] = val[slice_idx]
|
168 |
+
return new_gts, new_preds, new_masks
|
169 |
+
|
170 |
+
def prepare_points_eval(self, inputs, preds):
|
171 |
+
new_preds = {}
|
172 |
+
new_gts = inputs["points"]
|
173 |
+
new_masks = inputs["depth_mask"].bool()
|
174 |
+
if "points_mask" in inputs:
|
175 |
+
new_masks = inputs["points_mask"].bool()
|
176 |
+
for key, val in preds.items():
|
177 |
+
if "points" in key:
|
178 |
+
new_preds[key] = val
|
179 |
+
return new_gts, new_preds, new_masks
|
180 |
+
|
181 |
+
def add_points(self, inputs):
|
182 |
+
inputs["points"] = inputs.get("camera_original", inputs["camera"]).reconstruct(
|
183 |
+
inputs["depth"]
|
184 |
+
)
|
185 |
+
return inputs
|
186 |
+
|
187 |
+
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
|
188 |
+
def accumulate_metrics(
|
189 |
+
self,
|
190 |
+
inputs,
|
191 |
+
preds,
|
192 |
+
keyframe_idx=None,
|
193 |
+
metrics=["depth", "points", "flow_fwd", "pairwise"],
|
194 |
+
):
|
195 |
+
if "depth" in inputs and "points" not in inputs:
|
196 |
+
inputs = self.add_points(inputs)
|
197 |
+
|
198 |
+
available_metrics = []
|
199 |
+
for metric in metrics:
|
200 |
+
metric_in_gt = any((metric in k for k in inputs.keys()))
|
201 |
+
metric_in_pred = any((metric in k for k in preds.keys()))
|
202 |
+
if metric_in_gt and metric_in_pred:
|
203 |
+
available_metrics.append(metric)
|
204 |
+
|
205 |
+
if keyframe_idx is not None:
|
206 |
+
inputs = recursive_index(inputs, slice(keyframe_idx, keyframe_idx + 1))
|
207 |
+
preds = recursive_index(preds, slice(keyframe_idx, keyframe_idx + 1))
|
208 |
+
|
209 |
+
if "depth" in available_metrics:
|
210 |
+
depth_gt, depth_pred, depth_masks = self.prepare_depth_eval(inputs, preds)
|
211 |
+
self.accumulate_metrics_depth(depth_gt, depth_pred, depth_masks)
|
212 |
+
|
213 |
+
if "points" in available_metrics:
|
214 |
+
points_gt, points_pred, points_masks = self.prepare_points_eval(
|
215 |
+
inputs, preds
|
216 |
+
)
|
217 |
+
self.accumulate_metrics_3d(points_gt, points_pred, points_masks)
|
218 |
+
|
219 |
+
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
|
220 |
+
def accumulate_metrics_depth(self, gts, preds, masks):
|
221 |
+
for eval_type, pred in preds.items():
|
222 |
+
log_name = eval_type.replace("depth", "").strip("-").strip("_")
|
223 |
+
if log_name not in self.metrics_store:
|
224 |
+
self.metrics_store[log_name] = {}
|
225 |
+
current_count = self.metrics_count.get(
|
226 |
+
log_name, torch.tensor([], device=gts.device)
|
227 |
+
)
|
228 |
+
new_count = masks.view(gts.shape[0], -1).sum(dim=-1)
|
229 |
+
self.metrics_count[log_name] = torch.cat([current_count, new_count])
|
230 |
+
for k, v in eval_depth(gts, pred, masks, max_depth=self.max_depth).items():
|
231 |
+
current_metric = self.metrics_store[log_name].get(
|
232 |
+
k, torch.tensor([], device=gts.device)
|
233 |
+
)
|
234 |
+
self.metrics_store[log_name][k] = torch.cat([current_metric, v])
|
235 |
+
|
236 |
+
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
|
237 |
+
def accumulate_metrics_3d(self, gts, preds, masks):
|
238 |
+
thresholds = torch.linspace(
|
239 |
+
log(self.min_depth),
|
240 |
+
log(self.max_depth / 20),
|
241 |
+
steps=100,
|
242 |
+
device=gts.device,
|
243 |
+
).exp()
|
244 |
+
for eval_type, pred in preds.items():
|
245 |
+
log_name = eval_type.replace("points", "").strip("-").strip("_")
|
246 |
+
if log_name not in self.metrics_store:
|
247 |
+
self.metrics_store[log_name] = {}
|
248 |
+
current_count = self.metrics_count.get(
|
249 |
+
log_name, torch.tensor([], device=gts.device)
|
250 |
+
)
|
251 |
+
new_count = masks.view(gts.shape[0], -1).sum(dim=-1)
|
252 |
+
self.metrics_count[log_name] = torch.cat([current_count, new_count])
|
253 |
+
for k, v in eval_3d(gts, pred, masks, thresholds=thresholds).items():
|
254 |
+
current_metric = self.metrics_store[log_name].get(
|
255 |
+
k, torch.tensor([], device=gts.device)
|
256 |
+
)
|
257 |
+
self.metrics_store[log_name][k] = torch.cat([current_metric, v])
|
258 |
+
|
259 |
+
def get_evaluation(self, metrics=None):
|
260 |
+
metric_vals = {}
|
261 |
+
for eval_type in metrics if metrics is not None else self.metrics_store.keys():
|
262 |
+
assert self.metrics_store[eval_type]
|
263 |
+
cnts = sync_tensor_across_gpus(self.metrics_count[eval_type])
|
264 |
+
for name, val in self.metrics_store[eval_type].items():
|
265 |
+
# vals_r = (sync_tensor_across_gpus(val) * cnts / cnts.sum()).sum()
|
266 |
+
vals_r = sync_tensor_across_gpus(val).mean()
|
267 |
+
metric_vals[f"{eval_type}_{name}".strip("_")] = np.round(
|
268 |
+
vals_r.cpu().item(), 5
|
269 |
+
)
|
270 |
+
self.metrics_store[eval_type] = {}
|
271 |
+
self.metrics_count = {}
|
272 |
+
return metric_vals
|
273 |
+
|
274 |
+
def replicate(self, results):
|
275 |
+
for i in range(1, self.num_copies):
|
276 |
+
results[(0, i)] = {k: deepcopy(v) for k, v in results[(0, 0)].items()}
|
277 |
+
results["sequence_fields"].append((0, i))
|
278 |
+
return results
|
279 |
+
|
280 |
+
def log_load_dataset(self):
|
281 |
+
if is_main_process():
|
282 |
+
info = f"Loaded {self.__class__.__name__} with {len(self)} images."
|
283 |
+
print(info)
|
284 |
+
|
285 |
+
def pre_pipeline(self, results):
|
286 |
+
results["image_fields"] = results.get("image_fields", set())
|
287 |
+
results["gt_fields"] = results.get("gt_fields", set())
|
288 |
+
results["mask_fields"] = results.get("mask_fields", set())
|
289 |
+
results["sequence_fields"] = results.get("sequence_fields", set())
|
290 |
+
results["camera_fields"] = results.get("camera_fields", set())
|
291 |
+
results["dataset_name"] = (
|
292 |
+
[self.__class__.__name__] * self.num_frames * self.num_copies
|
293 |
+
)
|
294 |
+
results["depth_scale"] = [self.depth_scale] * self.num_frames * self.num_copies
|
295 |
+
results["si"] = [False] * self.num_frames * self.num_copies
|
296 |
+
results["dense"] = [False] * self.num_frames * self.num_copies
|
297 |
+
results["synthetic"] = [False] * self.num_frames * self.num_copies
|
298 |
+
results["quality"] = [0] * self.num_frames * self.num_copies
|
299 |
+
results["valid_camera"] = [True] * self.num_frames * self.num_copies
|
300 |
+
results["valid_pose"] = [True] * self.num_frames * self.num_copies
|
301 |
+
return results
|
302 |
+
|
303 |
+
def eval_mask(self, valid_mask):
|
304 |
+
return valid_mask
|
305 |
+
|
306 |
+
def chunk(self, dataset, chunk_dim=1, pct=1.0):
|
307 |
+
subsampled_datasets = [
|
308 |
+
x
|
309 |
+
for i in range(0, len(dataset), int(1 / pct * chunk_dim))
|
310 |
+
for x in dataset[i : i + chunk_dim]
|
311 |
+
]
|
312 |
+
return subsampled_datasets
|
313 |
+
|
314 |
+
@abstractmethod
|
315 |
+
def preprocess(self, results):
|
316 |
+
raise NotImplementedError
|
317 |
+
|
318 |
+
@abstractmethod
|
319 |
+
def postprocess(self, results):
|
320 |
+
raise NotImplementedError
|
321 |
+
|
322 |
+
@abstractmethod
|
323 |
+
def get_mapper(self):
|
324 |
+
raise NotImplementedError
|
325 |
+
|
326 |
+
@abstractmethod
|
327 |
+
def get_intrinsics(self, idx, image_name):
|
328 |
+
raise NotImplementedError
|
329 |
+
|
330 |
+
@abstractmethod
|
331 |
+
def get_extrinsics(self, idx, image_name):
|
332 |
+
raise NotImplementedError
|
333 |
+
|
334 |
+
@abstractmethod
|
335 |
+
def load_dataset(self):
|
336 |
+
raise NotImplementedError
|
337 |
+
|
338 |
+
@abstractmethod
|
339 |
+
def get_single_item(self, idx, sample=None, mapper=None):
|
340 |
+
raise NotImplementedError
|
341 |
+
|
342 |
+
@abstractmethod
|
343 |
+
def __getitem__(self, idx):
|
344 |
+
raise NotImplementedError
|
unik3d/datasets/bdd.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
9 |
+
from unik3d.datasets.utils import DatasetFromList
|
10 |
+
|
11 |
+
|
12 |
+
class BDD(ImageDataset):
|
13 |
+
min_depth = 0.01
|
14 |
+
max_depth = 70.0
|
15 |
+
depth_scale = 256.0
|
16 |
+
test_split = "val.txt"
|
17 |
+
train_split = "train_clean.txt"
|
18 |
+
intrisics_file = "intrinsics.json"
|
19 |
+
hdf5_paths = ["BDD.hdf5"]
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
image_shape,
|
24 |
+
split_file,
|
25 |
+
test_mode,
|
26 |
+
benchmark=False,
|
27 |
+
augmentations_db={},
|
28 |
+
normalize=True,
|
29 |
+
resize_method="hard",
|
30 |
+
mini=1.0,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
image_shape=image_shape,
|
35 |
+
split_file=split_file,
|
36 |
+
test_mode=test_mode,
|
37 |
+
benchmark=benchmark,
|
38 |
+
normalize=normalize,
|
39 |
+
augmentations_db=augmentations_db,
|
40 |
+
resize_method=resize_method,
|
41 |
+
mini=mini,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
self.test_mode = test_mode
|
45 |
+
self.load_dataset()
|
46 |
+
|
47 |
+
def load_dataset(self):
|
48 |
+
h5file = h5py.File(
|
49 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
50 |
+
"r",
|
51 |
+
libver="latest",
|
52 |
+
swmr=True,
|
53 |
+
)
|
54 |
+
txt_file = np.array(h5file[self.split_file])
|
55 |
+
txt_string = txt_file.tostring().decode("ascii") # [:-1] # correct the -1
|
56 |
+
intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii")
|
57 |
+
intrinsics = json.loads(intrinsics)
|
58 |
+
|
59 |
+
dataset = []
|
60 |
+
for line in txt_string.split("\n"):
|
61 |
+
image_filename, depth_filename = line.strip().split(" ")
|
62 |
+
intrinsics_val = torch.tensor(
|
63 |
+
intrinsics[os.path.join(*image_filename.split("/")[:2])]
|
64 |
+
).squeeze()[:, :3]
|
65 |
+
sample = [image_filename, depth_filename, intrinsics_val]
|
66 |
+
dataset.append(sample)
|
67 |
+
h5file.close()
|
68 |
+
if not self.test_mode:
|
69 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
70 |
+
if self.test_mode:
|
71 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=0.1)
|
72 |
+
|
73 |
+
self.dataset = DatasetFromList(dataset)
|
74 |
+
self.log_load_dataset()
|
75 |
+
|
76 |
+
def pre_pipeline(self, results):
|
77 |
+
results = super().pre_pipeline(results)
|
78 |
+
results["si"] = [True] * self.num_copies
|
79 |
+
results["valid_camera"] = [False] * self.num_copies
|
80 |
+
results["dense"] = [False] * self.num_copies
|
81 |
+
results["quality"] = [2] * self.num_copies
|
82 |
+
return results
|
unik3d/datasets/bedlam.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class BEDLAM(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 256.0
|
9 |
+
depth_scale = 1000.0
|
10 |
+
test_split = "train.txt"
|
11 |
+
train_split = "val.txt"
|
12 |
+
sequences_file = "sequences.json"
|
13 |
+
hdf5_paths = ["BEDLAM.hdf5"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
image_shape: tuple[int, int],
|
18 |
+
split_file: str,
|
19 |
+
test_mode: bool,
|
20 |
+
normalize: bool,
|
21 |
+
augmentations_db: dict[str, Any],
|
22 |
+
resize_method: str,
|
23 |
+
mini: float = 1.0,
|
24 |
+
num_frames: int = 1,
|
25 |
+
benchmark: bool = False,
|
26 |
+
decode_fields: list[str] = ["image", "depth"],
|
27 |
+
inplace_fields: list[str] = ["K", "cam2w"],
|
28 |
+
**kwargs,
|
29 |
+
) -> None:
|
30 |
+
super().__init__(
|
31 |
+
image_shape=image_shape,
|
32 |
+
split_file=split_file,
|
33 |
+
test_mode=test_mode,
|
34 |
+
benchmark=benchmark,
|
35 |
+
normalize=normalize,
|
36 |
+
augmentations_db=augmentations_db,
|
37 |
+
resize_method=resize_method,
|
38 |
+
mini=mini,
|
39 |
+
num_frames=num_frames,
|
40 |
+
decode_fields=decode_fields,
|
41 |
+
inplace_fields=inplace_fields,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
45 |
+
def pre_pipeline(self, results):
|
46 |
+
results = super().pre_pipeline(results)
|
47 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
48 |
+
results["synthetic"] = [True] * self.num_frames * self.num_copies
|
49 |
+
results["quality"] = [0] * self.num_frames * self.num_copies
|
50 |
+
return results
|
unik3d/datasets/behave.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class Behave(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 10.0
|
9 |
+
depth_scale = 1000.0
|
10 |
+
default_fps = 10
|
11 |
+
test_split = "train.txt"
|
12 |
+
train_split = "train.txt"
|
13 |
+
sequences_file = "sequences.json"
|
14 |
+
hdf5_paths = ["Behave.hdf5"]
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
image_shape: tuple[int, int],
|
19 |
+
split_file: str,
|
20 |
+
test_mode: bool,
|
21 |
+
normalize: bool,
|
22 |
+
augmentations_db: dict[str, Any],
|
23 |
+
resize_method: str,
|
24 |
+
mini: float = 1.0,
|
25 |
+
num_frames: int = 1,
|
26 |
+
benchmark: bool = False,
|
27 |
+
decode_fields: list[str] = ["image", "depth"],
|
28 |
+
inplace_fields: list[str] = ["camera_params", "cam2w"],
|
29 |
+
**kwargs,
|
30 |
+
) -> None:
|
31 |
+
super().__init__(
|
32 |
+
image_shape=image_shape,
|
33 |
+
split_file=split_file,
|
34 |
+
test_mode=test_mode,
|
35 |
+
benchmark=benchmark,
|
36 |
+
normalize=normalize,
|
37 |
+
augmentations_db=augmentations_db,
|
38 |
+
resize_method=resize_method,
|
39 |
+
mini=mini,
|
40 |
+
num_frames=num_frames,
|
41 |
+
decode_fields=decode_fields,
|
42 |
+
inplace_fields=inplace_fields,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
|
46 |
+
def pre_pipeline(self, results):
|
47 |
+
results = super().pre_pipeline(results)
|
48 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
49 |
+
results["synthetic"] = [False] * self.num_frames * self.num_copies
|
50 |
+
results["si"] = [False] * self.num_frames * self.num_copies
|
51 |
+
results["quality"] = [1] * self.num_frames * self.num_copies
|
52 |
+
return results
|
unik3d/datasets/blendedmvg.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
4 |
+
|
5 |
+
|
6 |
+
class BlendedMVG(SequenceDataset):
|
7 |
+
min_depth = 0.01
|
8 |
+
max_depth = 5000.0
|
9 |
+
depth_scale = 1000.0
|
10 |
+
test_split = "train.txt"
|
11 |
+
train_split = "train.txt"
|
12 |
+
sequences_file = "sequences_clean.json"
|
13 |
+
hdf5_paths = ["BlendedMVG_.hdf5"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
image_shape: tuple[int, int],
|
18 |
+
split_file: str,
|
19 |
+
test_mode: bool,
|
20 |
+
normalize: bool,
|
21 |
+
augmentations_db: dict[str, Any],
|
22 |
+
resize_method: str,
|
23 |
+
mini: float = 1.0,
|
24 |
+
num_frames: int = 1,
|
25 |
+
benchmark: bool = False,
|
26 |
+
decode_fields: list[str] = ["image", "depth"],
|
27 |
+
inplace_fields: list[str] = ["K", "cam2w"],
|
28 |
+
**kwargs,
|
29 |
+
) -> None:
|
30 |
+
super().__init__(
|
31 |
+
image_shape=image_shape,
|
32 |
+
split_file=split_file,
|
33 |
+
test_mode=test_mode,
|
34 |
+
benchmark=benchmark,
|
35 |
+
normalize=normalize,
|
36 |
+
augmentations_db=augmentations_db,
|
37 |
+
resize_method=resize_method,
|
38 |
+
mini=mini,
|
39 |
+
num_frames=num_frames,
|
40 |
+
decode_fields=decode_fields,
|
41 |
+
inplace_fields=inplace_fields,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
45 |
+
def pre_pipeline(self, results):
|
46 |
+
results = super().pre_pipeline(results)
|
47 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
48 |
+
results["si"] = [False] * self.num_frames * self.num_copies
|
49 |
+
results["quality"] = [2] * self.num_frames * self.num_copies
|
50 |
+
return results
|
unik3d/datasets/cityscape.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
9 |
+
from unik3d.datasets.utils import DatasetFromList
|
10 |
+
|
11 |
+
|
12 |
+
class Cityscape(ImageDataset):
|
13 |
+
min_depth = 0.05
|
14 |
+
max_depth = 80.0
|
15 |
+
depth_scale = 256.0
|
16 |
+
test_split = "val.txt"
|
17 |
+
train_split = "train.txt"
|
18 |
+
intrisics_file = "intrinsics.json"
|
19 |
+
hdf5_paths = ["cityscape.hdf5"]
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
image_shape,
|
24 |
+
split_file,
|
25 |
+
test_mode,
|
26 |
+
crop=None,
|
27 |
+
benchmark=False,
|
28 |
+
augmentations_db={},
|
29 |
+
normalize=True,
|
30 |
+
resize_method="hard",
|
31 |
+
mini=1.0,
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
super().__init__(
|
35 |
+
image_shape=image_shape,
|
36 |
+
split_file=split_file,
|
37 |
+
test_mode=test_mode,
|
38 |
+
benchmark=benchmark,
|
39 |
+
normalize=normalize,
|
40 |
+
augmentations_db=augmentations_db,
|
41 |
+
resize_method=resize_method,
|
42 |
+
mini=mini,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
self.test_mode = test_mode
|
46 |
+
|
47 |
+
self.crop = crop
|
48 |
+
self.load_dataset()
|
49 |
+
|
50 |
+
def load_dataset(self):
|
51 |
+
h5file = h5py.File(
|
52 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
53 |
+
"r",
|
54 |
+
libver="latest",
|
55 |
+
swmr=True,
|
56 |
+
)
|
57 |
+
txt_file = np.array(h5file[self.split_file])
|
58 |
+
txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1
|
59 |
+
intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii")
|
60 |
+
intrinsics = json.loads(intrinsics)
|
61 |
+
h5file.close()
|
62 |
+
dataset = []
|
63 |
+
for line in txt_string.split("\n"):
|
64 |
+
image_filename, depth_filename = line.strip().split(" ")
|
65 |
+
intrinsics_val = torch.tensor(intrinsics[image_filename]).squeeze()[:, :3]
|
66 |
+
sample = [image_filename, depth_filename, intrinsics_val]
|
67 |
+
dataset.append(sample)
|
68 |
+
|
69 |
+
if not self.test_mode:
|
70 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
71 |
+
|
72 |
+
self.dataset = DatasetFromList(dataset)
|
73 |
+
self.log_load_dataset()
|
74 |
+
|
75 |
+
def pre_pipeline(self, results):
|
76 |
+
results = super().pre_pipeline(results)
|
77 |
+
results["quality"] = [2] * self.num_copies
|
78 |
+
return results
|
unik3d/datasets/ddad.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import h5py
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
9 |
+
from unik3d.datasets.utils import DatasetFromList
|
10 |
+
|
11 |
+
|
12 |
+
class DDAD(ImageDataset):
|
13 |
+
min_depth = 0.05
|
14 |
+
max_depth = 120.0
|
15 |
+
depth_scale = 256.0
|
16 |
+
test_split = "val.txt"
|
17 |
+
train_split = "train.txt"
|
18 |
+
intrisics_file = "intrinsics.json"
|
19 |
+
hdf5_paths = [f"ddad/ddad_{i}.hdf5" for i in range(8)]
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
image_shape,
|
24 |
+
split_file,
|
25 |
+
test_mode,
|
26 |
+
benchmark=False,
|
27 |
+
augmentations_db={},
|
28 |
+
normalize=True,
|
29 |
+
resize_method="hard",
|
30 |
+
mini=1.0,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
image_shape=image_shape,
|
35 |
+
split_file=split_file,
|
36 |
+
test_mode=test_mode,
|
37 |
+
benchmark=benchmark,
|
38 |
+
normalize=normalize,
|
39 |
+
augmentations_db=augmentations_db,
|
40 |
+
resize_method=resize_method,
|
41 |
+
mini=mini,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
self.test_mode = test_mode
|
45 |
+
self.load_dataset()
|
46 |
+
|
47 |
+
def load_dataset(self):
|
48 |
+
h5file = h5py.File(
|
49 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
50 |
+
"r",
|
51 |
+
libver="latest",
|
52 |
+
swmr=True,
|
53 |
+
)
|
54 |
+
txt_file = np.array(h5file[self.split_file])
|
55 |
+
txt_string = txt_file.tostring().decode("ascii").strip("\n")
|
56 |
+
intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii")
|
57 |
+
intrinsics = json.loads(intrinsics)
|
58 |
+
h5file.close()
|
59 |
+
dataset = []
|
60 |
+
for line in txt_string.split("\n"):
|
61 |
+
image_filename, depth_filename, chunk_idx = line.strip().split(" ")
|
62 |
+
intrinsics_val = torch.tensor(intrinsics[image_filename]).squeeze()[:, :3]
|
63 |
+
sample = [image_filename, depth_filename, intrinsics_val, chunk_idx]
|
64 |
+
dataset.append(sample)
|
65 |
+
|
66 |
+
if not self.test_mode:
|
67 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
68 |
+
|
69 |
+
self.dataset = DatasetFromList(dataset)
|
70 |
+
self.log_load_dataset()
|
71 |
+
|
72 |
+
def get_mapper(self):
|
73 |
+
return {
|
74 |
+
"image_filename": 0,
|
75 |
+
"depth_filename": 1,
|
76 |
+
"K": 2,
|
77 |
+
"chunk_idx": 3,
|
78 |
+
}
|
79 |
+
|
80 |
+
def pre_pipeline(self, results):
|
81 |
+
results = super().pre_pipeline(results)
|
82 |
+
results["dense"] = [False] * self.num_copies
|
83 |
+
results["quality"] = [1] * self.num_copies
|
84 |
+
return results
|
unik3d/datasets/deep360.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from unik3d.datasets.pipelines import Compose, PanoCrop, PanoRoll
|
6 |
+
from unik3d.datasets.sequence_dataset import SequenceDataset
|
7 |
+
|
8 |
+
|
9 |
+
class Deep360(SequenceDataset):
|
10 |
+
min_depth = 0.1
|
11 |
+
max_depth = 1000.0
|
12 |
+
depth_scale = 1000.0
|
13 |
+
test_split = "train.txt"
|
14 |
+
train_split = "train.txt"
|
15 |
+
sequences_file = "sequences.json"
|
16 |
+
hdf5_paths = [f"Deep360.hdf5"]
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
image_shape: tuple[int, int],
|
21 |
+
split_file: str,
|
22 |
+
test_mode: bool,
|
23 |
+
normalize: bool,
|
24 |
+
augmentations_db: dict[str, Any],
|
25 |
+
resize_method: str,
|
26 |
+
mini: float = 1.0,
|
27 |
+
num_frames: int = 1,
|
28 |
+
benchmark: bool = False,
|
29 |
+
decode_fields: list[str] = ["image", "depth"],
|
30 |
+
inplace_fields: list[str] = ["cam2w", "camera_params"],
|
31 |
+
**kwargs,
|
32 |
+
) -> None:
|
33 |
+
super().__init__(
|
34 |
+
image_shape=image_shape,
|
35 |
+
split_file=split_file,
|
36 |
+
test_mode=test_mode,
|
37 |
+
benchmark=benchmark,
|
38 |
+
normalize=normalize,
|
39 |
+
augmentations_db=augmentations_db,
|
40 |
+
resize_method=resize_method,
|
41 |
+
mini=mini,
|
42 |
+
num_frames=num_frames,
|
43 |
+
decode_fields=decode_fields,
|
44 |
+
inplace_fields=inplace_fields,
|
45 |
+
**kwargs,
|
46 |
+
)
|
47 |
+
self.resizer = Compose(
|
48 |
+
[PanoCrop(), PanoRoll(test_mode=test_mode), self.resizer]
|
49 |
+
)
|
50 |
+
|
51 |
+
def pre_pipeline(self, results):
|
52 |
+
results = super().pre_pipeline(results)
|
53 |
+
results["dense"] = [True] * self.num_frames * self.num_copies
|
54 |
+
results["synthetic"] = [True] * self.num_frames * self.num_copies
|
55 |
+
results["quality"] = [0] * self.num_frames * self.num_copies
|
56 |
+
return results
|
unik3d/datasets/dense.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import h5py
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from unik3d.datasets.image_dataset import ImageDataset
|
8 |
+
from unik3d.datasets.utils import DatasetFromList
|
9 |
+
|
10 |
+
|
11 |
+
class DENSE(ImageDataset):
|
12 |
+
CAM_INTRINSIC = {
|
13 |
+
"ALL": torch.tensor(
|
14 |
+
[
|
15 |
+
[1177.8614, 0.0, 474.319027],
|
16 |
+
[0.0, 1177.8614, 224.275919],
|
17 |
+
[0.0, 0.0, 1.0],
|
18 |
+
]
|
19 |
+
)
|
20 |
+
}
|
21 |
+
min_depth = 0.05
|
22 |
+
max_depth = 80.0
|
23 |
+
depth_scale = 255.0
|
24 |
+
test_split = "train.txt"
|
25 |
+
train_split = "train.txt"
|
26 |
+
hdf5_paths = ["DENSE.hdf5"]
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
image_shape,
|
31 |
+
split_file,
|
32 |
+
test_mode,
|
33 |
+
benchmark=False,
|
34 |
+
augmentations_db={},
|
35 |
+
normalize=True,
|
36 |
+
resize_method="hard",
|
37 |
+
mini=1.0,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
super().__init__(
|
41 |
+
image_shape=image_shape,
|
42 |
+
split_file=split_file,
|
43 |
+
test_mode=test_mode,
|
44 |
+
benchmark=benchmark,
|
45 |
+
normalize=normalize,
|
46 |
+
augmentations_db=augmentations_db,
|
47 |
+
resize_method=resize_method,
|
48 |
+
mini=mini,
|
49 |
+
**kwargs,
|
50 |
+
)
|
51 |
+
self.test_mode = test_mode
|
52 |
+
|
53 |
+
self.intrisics = {}
|
54 |
+
self.load_dataset()
|
55 |
+
|
56 |
+
def load_dataset(self):
|
57 |
+
h5file = h5py.File(
|
58 |
+
os.path.join(self.data_root, self.hdf5_paths[0]),
|
59 |
+
"r",
|
60 |
+
libver="latest",
|
61 |
+
swmr=True,
|
62 |
+
)
|
63 |
+
txt_file = np.array(h5file[self.split_file])
|
64 |
+
txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1
|
65 |
+
h5file.close()
|
66 |
+
dataset = []
|
67 |
+
for line in txt_string.split("\n"):
|
68 |
+
image_filename, depth_filename = line.strip().split(" ")
|
69 |
+
sample = [image_filename, depth_filename]
|
70 |
+
dataset.append(sample)
|
71 |
+
|
72 |
+
if not self.test_mode:
|
73 |
+
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini)
|
74 |
+
|
75 |
+
self.dataset = DatasetFromList(dataset)
|
76 |
+
self.log_load_dataset()
|
77 |
+
|
78 |
+
def get_intrinsics(self, idx, image_name):
|
79 |
+
return self.CAM_INTRINSIC["ALL"].clone()
|
80 |
+
|
81 |
+
def get_mapper(self):
|
82 |
+
return {
|
83 |
+
"image_filename": 0,
|
84 |
+
"depth_filename": 1,
|
85 |
+
}
|
86 |
+
|
87 |
+
def pre_pipeline(self, results):
|
88 |
+
results = super().pre_pipeline(results)
|
89 |
+
results["dense"] = [False] * self.num_copies
|
90 |
+
results["quality"] = [1] * self.num_copies
|
91 |
+
return results
|