lihong2303 commited on
Commit
6c62402
·
1 Parent(s): 2b16877
app.py CHANGED
@@ -1,63 +1,46 @@
 
1
  import gradio as gr
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
  """
43
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
  """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from PIL import Image
4
  from huggingface_hub import InferenceClient
5
 
6
+ respond = "hello!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  """
9
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
10
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ def load_image(file_path):
13
+ """Load an image from a file and return it in a format suitable for Gradio."""
14
+ return Image.open(file_path)
15
+
16
+ # Placeholder function to display initial images
17
+ def initial_display(description):
18
+ query_image_path = os.path.join("images", "true1.jpg")
19
+ candidate_image_1_path = os.path.join("images", "false_1.jpg")
20
+ candidate_image_2_path = os.path.join("images", "true_2.jpg")
21
+
22
+ query_image = load_image(query_image_path)
23
+ candidate_image_1 = load_image(candidate_image_1_path)
24
+ candidate_image_2 = load_image(candidate_image_2_path)
25
+ return query_image, candidate_image_1, candidate_image_2, "Initial setup complete. Click on the correct candidate image."
26
+
27
+
28
+ with gr.Blocks as demo:
29
+ text_input = gr.Textbox(label="Enter description")
30
+ text_submit = gr.Button("Submit")
31
+ select_dataset = gr.Dropdown(choices=["hmdb","ocl"],value="ocl",label="select dataset"),
32
+ select_mode = gr.Dropdown(choices=["1","2","3","4"],value="1",label="select mode"),
33
+
34
+ query_image = gr.Image(label="Query Image", type="file")
35
+ candidate_image_1 = gr.Image(label="Candidate Image 1", type="file")
36
+ candidate_image_2 = gr.Image(label="Candidate Image 2", type="file")
37
+ logs = gr.Textbox(label="Logs")
38
+
39
+ text_submit.click(
40
+ initial_display,
41
+ inputs=text_input,
42
+ outputs=[query_image, candidate_image_1, candidate_image_2, logs]
43
+ )
44
 
45
  if __name__ == "__main__":
46
  demo.launch()
app1.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+ """
43
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
+ """
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
+ gr.Dropdown(choices=["hmdb","ocl"],value="ocl",label="select dataset"),
50
+ gr.Dropdown(choices=["1","2","3","4"],value="1",label="select mode"),
51
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ # gr.Slider(
54
+ # minimum=0.1,
55
+ # maximum=1.0,
56
+ # value=0.95,
57
+ # step=0.05,
58
+ # label="Top-p (nucleus sampling)",
59
+ # ),
60
+ ],
61
+ )
62
+
63
+
64
+ if __name__ == "__main__":
65
+ demo.launch()
images/false_1.jpg ADDED
images/false_2.jpg ADDED
images/false_3.jpg ADDED
images/true_1.jpg ADDED
images/true_2.jpg ADDED
images/true_3.jpg ADDED