# Adapted from https://github.com/lioryariv/volsdf/blob/main/DATA_CONVENTION.md import cv2 import numpy as np import argparse def get_center_point(num_cams,cameras): A = np.zeros((3 * num_cams, 3 + num_cams)) b = np.zeros((3 * num_cams, 1)) camera_centers=np.zeros((3,num_cams)) for i in range(num_cams): if 'cam_%d' % i in cameras: P0 = cameras['cam_%d' % i][:3, :] else: P0 = cameras[i] K = cv2.decomposeProjectionMatrix(P0)[0] R = cv2.decomposeProjectionMatrix(P0)[1] c = cv2.decomposeProjectionMatrix(P0)[2] c = c / c[3] camera_centers[:,i]=c[:3].flatten() v=R[2,:] A[3 * i:(3 * i + 3), :3] = np.eye(3) A[3 * i:(3 * i + 3), 3 + i] = -v b[3 * i:(3 * i + 3)] = c[:3] return camera_centers def normalize_cameras(original_cameras_filename,output_cameras_filename,num_of_cameras, scene_bounding_sphere=3.0): cameras = np.load(original_cameras_filename) if num_of_cameras==-1: all_files=cameras.files maximal_ind=0 for field in all_files: maximal_ind=np.maximum(maximal_ind,int(field.split('_')[-1])) num_of_cameras=maximal_ind+1 camera_centers = get_center_point(num_of_cameras, cameras) center = np.array([0, 0, 0]) max_radius = np.linalg.norm((center[:, np.newaxis] - camera_centers), axis=0).max() * 1.1 normalization = np.eye(4).astype(np.float32) normalization[0, 0] = max_radius / scene_bounding_sphere normalization[1, 1] = max_radius / scene_bounding_sphere normalization[2, 2] = max_radius / scene_bounding_sphere cameras_new = {} for i in range(num_of_cameras): cameras_new['scale_mat_%d' % i] = normalization cameras_new['world_mat_%d' % i] = cameras['cam_%d' % i].copy() np.savez(output_cameras_filename, **cameras_new) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Normalizing cameras') parser.add_argument('--input_cameras_file', type=str, default="cameras.npz", help='the input cameras file') parser.add_argument('--output_cameras_file', type=str, default="cameras_normalize.npz", help='the output cameras file') parser.add_argument('--number_of_cams',type=int, default=-1, help='Number of cameras, if -1 use all') args = parser.parse_args() normalize_cameras(args.input_cameras_file, args.output_cameras_file, args.number_of_cams)