IF3D / code /lib /model /loss.py
leobcc's picture
vid2avatar baseline
6325697
raw
history blame
2.98 kB
import torch
from torch import nn
from torch.nn import functional as F
class Loss(nn.Module):
def __init__(self, opt):
super().__init__()
self.eikonal_weight = opt.eikonal_weight
self.bce_weight = opt.bce_weight
self.opacity_sparse_weight = opt.opacity_sparse_weight
self.in_shape_weight = opt.in_shape_weight
self.eps = 1e-6
self.milestone = 200
self.l1_loss = nn.L1Loss(reduction='mean')
self.l2_loss = nn.MSELoss(reduction='mean')
# L1 reconstruction loss for RGB values
def get_rgb_loss(self, rgb_values, rgb_gt):
rgb_loss = self.l1_loss(rgb_values, rgb_gt)
return rgb_loss
# Eikonal loss introduced in IGR
def get_eikonal_loss(self, grad_theta):
eikonal_loss = ((grad_theta.norm(2, dim=-1) - 1)**2).mean()
return eikonal_loss
# BCE loss for clear boundary
def get_bce_loss(self, acc_map):
binary_loss = -1 * (acc_map * (acc_map + self.eps).log() + (1-acc_map) * (1 - acc_map + self.eps).log()).mean() * 2
return binary_loss
# Global opacity sparseness regularization
def get_opacity_sparse_loss(self, acc_map, index_off_surface):
opacity_sparse_loss = self.l1_loss(acc_map[index_off_surface], torch.zeros_like(acc_map[index_off_surface]))
return opacity_sparse_loss
# Optional: This loss helps to stablize the training in the very beginning
def get_in_shape_loss(self, acc_map, index_in_surface):
in_shape_loss = self.l1_loss(acc_map[index_in_surface], torch.ones_like(acc_map[index_in_surface]))
return in_shape_loss
def forward(self, model_outputs, ground_truth):
nan_filter = ~torch.any(model_outputs['rgb_values'].isnan(), dim=1)
rgb_gt = ground_truth['rgb'][0].cuda()
rgb_loss = self.get_rgb_loss(model_outputs['rgb_values'][nan_filter], rgb_gt[nan_filter])
eikonal_loss = self.get_eikonal_loss(model_outputs['grad_theta'])
bce_loss = self.get_bce_loss(model_outputs['acc_map'])
opacity_sparse_loss = self.get_opacity_sparse_loss(model_outputs['acc_map'], model_outputs['index_off_surface'])
in_shape_loss = self.get_in_shape_loss(model_outputs['acc_map'], model_outputs['index_in_surface'])
curr_epoch_for_loss = min(self.milestone, model_outputs['epoch']) # will not increase after the milestone
loss = rgb_loss + \
self.eikonal_weight * eikonal_loss + \
self.bce_weight * bce_loss + \
self.opacity_sparse_weight * (1 + curr_epoch_for_loss ** 2 / 40) * opacity_sparse_loss + \
self.in_shape_weight * (1 - curr_epoch_for_loss / self.milestone) * in_shape_loss
return {
'loss': loss,
'rgb_loss': rgb_loss,
'eikonal_loss': eikonal_loss,
'bce_loss': bce_loss,
'opacity_sparse_loss': opacity_sparse_loss,
'in_shape_loss': in_shape_loss,
}