|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
class Loss(nn.Module): |
|
def __init__(self, opt): |
|
super().__init__() |
|
self.eikonal_weight = opt.eikonal_weight |
|
self.bce_weight = opt.bce_weight |
|
self.opacity_sparse_weight = opt.opacity_sparse_weight |
|
self.in_shape_weight = opt.in_shape_weight |
|
self.eps = 1e-6 |
|
self.milestone = 200 |
|
self.l1_loss = nn.L1Loss(reduction='mean') |
|
self.l2_loss = nn.MSELoss(reduction='mean') |
|
|
|
|
|
def get_rgb_loss(self, rgb_values, rgb_gt): |
|
rgb_loss = self.l1_loss(rgb_values, rgb_gt) |
|
return rgb_loss |
|
|
|
|
|
def get_eikonal_loss(self, grad_theta): |
|
eikonal_loss = ((grad_theta.norm(2, dim=-1) - 1)**2).mean() |
|
return eikonal_loss |
|
|
|
|
|
def get_bce_loss(self, acc_map): |
|
binary_loss = -1 * (acc_map * (acc_map + self.eps).log() + (1-acc_map) * (1 - acc_map + self.eps).log()).mean() * 2 |
|
return binary_loss |
|
|
|
|
|
def get_opacity_sparse_loss(self, acc_map, index_off_surface): |
|
opacity_sparse_loss = self.l1_loss(acc_map[index_off_surface], torch.zeros_like(acc_map[index_off_surface])) |
|
return opacity_sparse_loss |
|
|
|
|
|
def get_in_shape_loss(self, acc_map, index_in_surface): |
|
in_shape_loss = self.l1_loss(acc_map[index_in_surface], torch.ones_like(acc_map[index_in_surface])) |
|
return in_shape_loss |
|
|
|
def forward(self, model_outputs, ground_truth): |
|
nan_filter = ~torch.any(model_outputs['rgb_values'].isnan(), dim=1) |
|
rgb_gt = ground_truth['rgb'][0].cuda() |
|
rgb_loss = self.get_rgb_loss(model_outputs['rgb_values'][nan_filter], rgb_gt[nan_filter]) |
|
eikonal_loss = self.get_eikonal_loss(model_outputs['grad_theta']) |
|
bce_loss = self.get_bce_loss(model_outputs['acc_map']) |
|
opacity_sparse_loss = self.get_opacity_sparse_loss(model_outputs['acc_map'], model_outputs['index_off_surface']) |
|
in_shape_loss = self.get_in_shape_loss(model_outputs['acc_map'], model_outputs['index_in_surface']) |
|
curr_epoch_for_loss = min(self.milestone, model_outputs['epoch']) |
|
|
|
loss = rgb_loss + \ |
|
self.eikonal_weight * eikonal_loss + \ |
|
self.bce_weight * bce_loss + \ |
|
self.opacity_sparse_weight * (1 + curr_epoch_for_loss ** 2 / 40) * opacity_sparse_loss + \ |
|
self.in_shape_weight * (1 - curr_epoch_for_loss / self.milestone) * in_shape_loss |
|
return { |
|
'loss': loss, |
|
'rgb_loss': rgb_loss, |
|
'eikonal_loss': eikonal_loss, |
|
'bce_loss': bce_loss, |
|
'opacity_sparse_loss': opacity_sparse_loss, |
|
'in_shape_loss': in_shape_loss, |
|
} |