File size: 16,627 Bytes
6325697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
"""This module contains simple helper functions and classes for preprocessing """
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
DEFAULT_DTYPE = torch.float32
INVALID_TRANS=np.ones(3)*-1
def smpl_to_pose(model_type='smplx', use_hands=True, use_face=True,
use_face_contour=False, openpose_format='coco25'):
''' Returns the indices of the permutation that maps OpenPose to SMPL
Parameters
----------
model_type: str, optional
The type of SMPL-like model that is used. The default mapping
returned is for the SMPLX model
use_hands: bool, optional
Flag for adding to the returned permutation the mapping for the
hand keypoints. Defaults to True
use_face: bool, optional
Flag for adding to the returned permutation the mapping for the
face keypoints. Defaults to True
use_face_contour: bool, optional
Flag for appending the facial contour keypoints. Defaults to False
openpose_format: bool, optional
The output format of OpenPose. For now only COCO-25 and COCO-19 is
supported. Defaults to 'coco25'
'''
if openpose_format.lower() == 'coco25':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 63, 22, 23, 24, 64,
25, 26, 27, 65, 31, 32, 33, 66, 28,
29, 30, 67], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 68, 37, 38, 39, 69,
40, 41, 42, 70, 46, 47, 48, 71, 43,
44, 45, 72], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 66, 25, 26, 27,
67, 28, 29, 30, 68, 34, 35, 36, 69,
31, 32, 33, 70], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 71, 40, 41, 42, 72,
43, 44, 45, 73, 49, 50, 51, 74, 46,
47, 48, 75], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
# end_idx = 127 + 17 * use_face_contour
face_mapping = np.arange(76, 127 + 17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'coco19':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 2, 5, 8,
1, 4, 7, 25, 26, 27, 28],
dtype=np.int32)
elif model_type == 'smpl_neutral':
return np.array([14, 12, 8, 7, 6, 9, 10, 11, 2, 1, 0, 3, 4, 5, 16, 15,18, 17,],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 57, 22, 23, 24, 58,
25, 26, 27, 59, 31, 32, 33, 60, 28,
29, 30, 61], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 62, 37, 38, 39, 63,
40, 41, 42, 64, 46, 47, 48, 65, 43,
44, 45, 66], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 60, 25, 26, 27,
61, 28, 29, 30, 62, 34, 35, 36, 63,
31, 32, 33, 64], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 65, 40, 41, 42, 66,
43, 44, 45, 67, 49, 50, 51, 68, 46,
47, 48, 69], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
face_mapping = np.arange(70, 70 + 51 +
17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'h36':
if model_type == 'smpl':
return np.array([2,5,8,1,4,7,12,24,16,18,20,17,19,21],dtype=np.int32)
elif model_type == 'smpl_neutral':
#return np.array([2,1,0,3,4,5,12,13,9,10,11,8,7,6], dtype=np.int32)
return [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10]
else:
raise ValueError('Unknown joint format: {}'.format(openpose_format))
def render_trimesh(renderer,mesh,R,T, mode='np'):
verts = torch.tensor(mesh.vertices).cuda().float()[None]
faces = torch.tensor(mesh.faces).cuda()[None]
colors = torch.tensor(mesh.visual.vertex_colors).float().cuda()[None,...,:3]/255
renderer.set_camera(R,T)
image = renderer.render_mesh_recon(verts, faces, colors=colors, mode=mode)[0]
image = (255*image).data.cpu().numpy().astype(np.uint8)
return image
def estimate_translation_cv2(joints_3d, joints_2d, focal_length=600, img_size=np.array([512.,512.]), proj_mat=None, cam_dist=None):
if proj_mat is None:
camK = np.eye(3)
camK[0,0], camK[1,1] = focal_length, focal_length
camK[:2,2] = img_size//2
else:
camK = proj_mat
_, _, tvec,inliers = cv2.solvePnPRansac(joints_3d, joints_2d, camK, cam_dist,\
flags=cv2.SOLVEPNP_EPNP,reprojectionError=20,iterationsCount=100)
if inliers is None:
return INVALID_TRANS
else:
tra_pred = tvec[:,0]
return tra_pred
class JointMapper(nn.Module):
def __init__(self, joint_maps=None):
super(JointMapper, self).__init__()
if joint_maps is None:
self.joint_maps = joint_maps
else:
self.register_buffer('joint_maps',
torch.tensor(joint_maps, dtype=torch.long))
def forward(self, joints, **kwargs):
if self.joint_maps is None:
return joints
else:
return torch.index_select(joints, 1, self.joint_maps)
def transform_mat(R, t):
''' Creates a batch of transformation matrices
Args:
- R: Bx3x3 array of a batch of rotation matrices
- t: Bx3x1 array of a batch of translation vectors
Returns:
- T: Bx4x4 Transformation matrix
'''
# No padding left or right, only add an extra row
return torch.cat([F.pad(R, [0, 0, 0, 1]),
F.pad(t, [0, 0, 0, 1], value=1)], dim=2)
# transform SMPL such that the target camera extrinsic will be met
def transform_smpl(curr_extrinsic, target_extrinsic, smpl_pose, smpl_trans, T_hip):
R_root = cv2.Rodrigues(smpl_pose[:3])[0]
transf_global_ori = np.linalg.inv(target_extrinsic[:3,:3]) @ curr_extrinsic[:3,:3] @ R_root
target_extrinsic[:3, -1] = curr_extrinsic[:3,:3] @ (smpl_trans + T_hip) + curr_extrinsic[:3, -1] - smpl_trans - target_extrinsic[:3,:3] @ T_hip
smpl_pose[:3] = cv2.Rodrigues(transf_global_ori)[0].reshape(3)
smpl_trans = np.linalg.inv(target_extrinsic[:3,:3]) @ smpl_trans # we assume
return target_extrinsic, smpl_pose, smpl_trans
class GMoF(nn.Module):
def __init__(self, rho=1):
super(GMoF, self).__init__()
self.rho = rho
def extra_repr(self):
return 'rho = {}'.format(self.rho)
def forward(self, residual):
squared_res = residual ** 2
dist = torch.div(squared_res, squared_res + self.rho ** 2)
return self.rho ** 2 * dist
class PerspectiveCamera(nn.Module):
FOCAL_LENGTH = 50*128
def __init__(self, rotation=None, translation=None,
focal_length_x=None, focal_length_y=None,
batch_size=1,
center=None, dtype=torch.float32):
super(PerspectiveCamera, self).__init__()
self.batch_size = batch_size
self.dtype = dtype
# Make a buffer so that PyTorch does not complain when creating
# the camera matrix
self.register_buffer('zero',
torch.zeros([batch_size], dtype=dtype))
if focal_length_x is None or type(focal_length_x) == float:
focal_length_x = torch.full(
[batch_size],
self.FOCAL_LENGTH if focal_length_x is None else
focal_length_x,
dtype=dtype)
if focal_length_y is None or type(focal_length_y) == float:
focal_length_y = torch.full(
[batch_size],
self.FOCAL_LENGTH if focal_length_y is None else
focal_length_y,
dtype=dtype)
self.register_buffer('focal_length_x', focal_length_x)
self.register_buffer('focal_length_y', focal_length_y)
if center is None:
center = torch.zeros([batch_size, 2], dtype=dtype)
self.register_buffer('center', center)
if rotation is None:
rotation = torch.eye(
3, dtype=dtype).unsqueeze(dim=0).repeat(batch_size, 1, 1)
rotation = nn.Parameter(rotation, requires_grad=False)
self.register_parameter('rotation', rotation)
if translation is None:
translation = torch.zeros([batch_size, 3], dtype=dtype)
translation = nn.Parameter(translation,
requires_grad=True)
self.register_parameter('translation', translation)
def forward(self, points):
device = points.device
with torch.no_grad():
camera_mat = torch.zeros([self.batch_size, 2, 2],
dtype=self.dtype, device=points.device)
camera_mat[:, 0, 0] = self.focal_length_x
camera_mat[:, 1, 1] = self.focal_length_y
camera_transform = transform_mat(self.rotation,
self.translation.unsqueeze(dim=-1))
homog_coord = torch.ones(list(points.shape)[:-1] + [1],
dtype=points.dtype,
device=device)
# Convert the points to homogeneous coordinates
points_h = torch.cat([points, homog_coord], dim=-1)
projected_points = torch.einsum('bki,bji->bjk',
[camera_transform, points_h])
img_points = torch.div(projected_points[:, :, :2],
projected_points[:, :, 2].unsqueeze(dim=-1))
img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) \
+ self.center.unsqueeze(dim=1)
return img_points
class Renderer():
def __init__(self, principal_point=None, img_size=None, cam_intrinsic = None):
super().__init__()
self.device = torch.device("cuda:0")
torch.cuda.set_device(self.device)
self.cam_intrinsic = cam_intrinsic
self.image_size = img_size
self.render_img_size = np.max(img_size)
principal_point = [-(self.cam_intrinsic[0,2]-self.image_size[1]/2.)/(self.image_size[1]/2.), -(self.cam_intrinsic[1,2]-self.image_size[0]/2.)/(self.image_size[0]/2.)]
self.principal_point = torch.tensor(principal_point, device=self.device).unsqueeze(0)
self.cam_R = torch.from_numpy(np.array([[-1., 0., 0.],
[0., -1., 0.],
[0., 0., 1.]])).cuda().float().unsqueeze(0)
self.cam_T = torch.zeros((1,3)).cuda().float()
half_max_length = max(self.cam_intrinsic[0:2,2])
self.focal_length = torch.tensor([(self.cam_intrinsic[0,0]/half_max_length).astype(np.float32), \
(self.cam_intrinsic[1,1]/half_max_length).astype(np.float32)]).unsqueeze(0)
self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)
self.lights = PointLights(device=self.device,location=[[0.0, 0.0, 0.0]], ambient_color=((1,1,1),),diffuse_color=((0,0,0),),specular_color=((0,0,0),))
self.raster_settings = RasterizationSettings(image_size=self.render_img_size, faces_per_pixel=10, blur_radius=0, max_faces_per_bin=30000)
self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)
self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)
self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)
def set_camera(self, R, T):
self.cam_R = R
self.cam_T = T
self.cam_R[:, :2, :] *= -1.0
self.cam_T[:, :2] *= -1.0
self.cam_R = torch.transpose(self.cam_R,1,2)
self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)
self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)
self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)
self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)
def render_mesh_recon(self, verts, faces, R=None, T=None, colors=None, mode='npat'):
'''
mode: normal, phong, texture
'''
with torch.no_grad():
mesh = Meshes(verts, faces)
normals = torch.stack(mesh.verts_normals_list())
front_light = -torch.tensor([0,0,-1]).float().to(verts.device)
shades = (normals * front_light.view(1,1,3)).sum(-1).clamp(min=0).unsqueeze(-1).expand(-1,-1,3)
results = []
# shading
if 'p' in mode:
mesh_shading = Meshes(verts, faces, textures=Textures(verts_rgb=shades))
image_phong = self.renderer(mesh_shading)
results.append(image_phong)
# normal
if 'n' in mode:
normals_vis = normals* 0.5 + 0.5
normals_vis = normals_vis[:,:,[2,1,0]]
mesh_normal = Meshes(verts, faces, textures=Textures(verts_rgb=normals_vis))
image_normal = self.renderer(mesh_normal)
results.append(image_normal)
return torch.cat(results, axis=1)
|