File size: 16,627 Bytes
6325697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""This module contains simple helper functions and classes for preprocessing """
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
    SfMPerspectiveCameras,
    RasterizationSettings,
    MeshRenderer,
    MeshRasterizer,
    SoftPhongShader,
    PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
DEFAULT_DTYPE = torch.float32
INVALID_TRANS=np.ones(3)*-1

def smpl_to_pose(model_type='smplx', use_hands=True, use_face=True,
                     use_face_contour=False, openpose_format='coco25'):
    ''' Returns the indices of the permutation that maps OpenPose to SMPL
        Parameters
        ----------
        model_type: str, optional
            The type of SMPL-like model that is used. The default mapping
            returned is for the SMPLX model
        use_hands: bool, optional
            Flag for adding to the returned permutation the mapping for the
            hand keypoints. Defaults to True
        use_face: bool, optional
            Flag for adding to the returned permutation the mapping for the
            face keypoints. Defaults to True
        use_face_contour: bool, optional
            Flag for appending the facial contour keypoints. Defaults to False
        openpose_format: bool, optional
            The output format of OpenPose. For now only COCO-25 and COCO-19 is
            supported. Defaults to 'coco25'
    '''
    if openpose_format.lower() == 'coco25':
        if model_type == 'smpl':
            return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
                             7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
                            dtype=np.int32)
        elif model_type == 'smplh':
            body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
                                     8, 1, 4, 7, 53, 54, 55, 56, 57, 58, 59,
                                     60, 61, 62], dtype=np.int32)
            mapping = [body_mapping]
            if use_hands:
                lhand_mapping = np.array([20, 34, 35, 36, 63, 22, 23, 24, 64,
                                          25, 26, 27, 65, 31, 32, 33, 66, 28,
                                          29, 30, 67], dtype=np.int32)
                rhand_mapping = np.array([21, 49, 50, 51, 68, 37, 38, 39, 69,
                                          40, 41, 42, 70, 46, 47, 48, 71, 43,
                                          44, 45, 72], dtype=np.int32)
                mapping += [lhand_mapping, rhand_mapping]
            return np.concatenate(mapping)
        # SMPLX
        elif model_type == 'smplx':
            body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
                                     8, 1, 4, 7, 56, 57, 58, 59, 60, 61, 62,
                                     63, 64, 65], dtype=np.int32)
            mapping = [body_mapping]
            if use_hands:
                lhand_mapping = np.array([20, 37, 38, 39, 66, 25, 26, 27,
                                          67, 28, 29, 30, 68, 34, 35, 36, 69,
                                          31, 32, 33, 70], dtype=np.int32)
                rhand_mapping = np.array([21, 52, 53, 54, 71, 40, 41, 42, 72,
                                          43, 44, 45, 73, 49, 50, 51, 74, 46,
                                          47, 48, 75], dtype=np.int32)

                mapping += [lhand_mapping, rhand_mapping]

            if use_face:
                #  end_idx = 127 + 17 * use_face_contour
                face_mapping = np.arange(76, 127 + 17 * use_face_contour,
                                         dtype=np.int32)
                mapping += [face_mapping]

            return np.concatenate(mapping)
        else:
            raise ValueError('Unknown model type: {}'.format(model_type))
    elif openpose_format == 'coco19':
        if model_type == 'smpl':
            return np.array([24, 12, 17, 19, 21, 16, 18, 20, 2, 5, 8,
                             1, 4, 7, 25, 26, 27, 28],
                            dtype=np.int32)
        elif model_type == 'smpl_neutral':
            return np.array([14, 12, 8, 7, 6, 9, 10, 11, 2, 1, 0, 3, 4, 5,  16, 15,18, 17,],
                            dtype=np.int32)

        elif model_type == 'smplh':
            body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
                                     8, 1, 4, 7, 53, 54, 55, 56],
                                    dtype=np.int32)
            mapping = [body_mapping]
            if use_hands:
                lhand_mapping = np.array([20, 34, 35, 36, 57, 22, 23, 24, 58,
                                          25, 26, 27, 59, 31, 32, 33, 60, 28,
                                          29, 30, 61], dtype=np.int32)
                rhand_mapping = np.array([21, 49, 50, 51, 62, 37, 38, 39, 63,
                                          40, 41, 42, 64, 46, 47, 48, 65, 43,
                                          44, 45, 66], dtype=np.int32)
                mapping += [lhand_mapping, rhand_mapping]
            return np.concatenate(mapping)
        # SMPLX
        elif model_type == 'smplx':
            body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
                                     8, 1, 4, 7, 56, 57, 58, 59],
                                    dtype=np.int32)
            mapping = [body_mapping]
            if use_hands:
                lhand_mapping = np.array([20, 37, 38, 39, 60, 25, 26, 27,
                                          61, 28, 29, 30, 62, 34, 35, 36, 63,
                                          31, 32, 33, 64], dtype=np.int32)
                rhand_mapping = np.array([21, 52, 53, 54, 65, 40, 41, 42, 66,
                                          43, 44, 45, 67, 49, 50, 51, 68, 46,
                                          47, 48, 69], dtype=np.int32)

                mapping += [lhand_mapping, rhand_mapping]
            if use_face:
                face_mapping = np.arange(70, 70 + 51 +
                                         17 * use_face_contour,
                                         dtype=np.int32)
                mapping += [face_mapping]

            return np.concatenate(mapping)
        else:
            raise ValueError('Unknown model type: {}'.format(model_type))
    elif openpose_format == 'h36':
        if model_type == 'smpl':
            return np.array([2,5,8,1,4,7,12,24,16,18,20,17,19,21],dtype=np.int32)
        elif model_type == 'smpl_neutral':
            #return np.array([2,1,0,3,4,5,12,13,9,10,11,8,7,6], dtype=np.int32)
            return [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10]

    else:
        raise ValueError('Unknown joint format: {}'.format(openpose_format))

def render_trimesh(renderer,mesh,R,T, mode='np'):
    
    verts = torch.tensor(mesh.vertices).cuda().float()[None]
    faces = torch.tensor(mesh.faces).cuda()[None]
    colors = torch.tensor(mesh.visual.vertex_colors).float().cuda()[None,...,:3]/255
    renderer.set_camera(R,T)
    image = renderer.render_mesh_recon(verts, faces, colors=colors, mode=mode)[0]
    image = (255*image).data.cpu().numpy().astype(np.uint8)
    
    return image

def estimate_translation_cv2(joints_3d, joints_2d, focal_length=600, img_size=np.array([512.,512.]), proj_mat=None, cam_dist=None):
    if proj_mat is None:
        camK = np.eye(3)
        camK[0,0], camK[1,1] = focal_length, focal_length
        camK[:2,2] = img_size//2
    else:
        camK = proj_mat
    _, _, tvec,inliers = cv2.solvePnPRansac(joints_3d, joints_2d, camK, cam_dist,\
                                            flags=cv2.SOLVEPNP_EPNP,reprojectionError=20,iterationsCount=100)

    if inliers is None:
        return INVALID_TRANS
    else:
        tra_pred = tvec[:,0]            
        return tra_pred

class JointMapper(nn.Module):
    def __init__(self, joint_maps=None):
        super(JointMapper, self).__init__()
        if joint_maps is None:
            self.joint_maps = joint_maps
        else:
            self.register_buffer('joint_maps',
                                 torch.tensor(joint_maps, dtype=torch.long))

    def forward(self, joints, **kwargs):
        if self.joint_maps is None:
            return joints
        else:
            return torch.index_select(joints, 1, self.joint_maps)

def transform_mat(R, t):
    ''' Creates a batch of transformation matrices
        Args:
            - R: Bx3x3 array of a batch of rotation matrices
            - t: Bx3x1 array of a batch of translation vectors
        Returns:
            - T: Bx4x4 Transformation matrix
    '''
    # No padding left or right, only add an extra row
    return torch.cat([F.pad(R, [0, 0, 0, 1]),
                      F.pad(t, [0, 0, 0, 1], value=1)], dim=2)

# transform SMPL such that the target camera extrinsic will be met
def transform_smpl(curr_extrinsic, target_extrinsic, smpl_pose, smpl_trans, T_hip):
    
    R_root = cv2.Rodrigues(smpl_pose[:3])[0]
    transf_global_ori = np.linalg.inv(target_extrinsic[:3,:3]) @ curr_extrinsic[:3,:3] @ R_root
    
    target_extrinsic[:3, -1] = curr_extrinsic[:3,:3] @ (smpl_trans + T_hip) + curr_extrinsic[:3, -1] - smpl_trans - target_extrinsic[:3,:3] @ T_hip 

    smpl_pose[:3] = cv2.Rodrigues(transf_global_ori)[0].reshape(3)
    smpl_trans = np.linalg.inv(target_extrinsic[:3,:3]) @ smpl_trans # we assume

    return target_extrinsic, smpl_pose, smpl_trans

class GMoF(nn.Module):
    def __init__(self, rho=1):
        super(GMoF, self).__init__()
        self.rho = rho

    def extra_repr(self):
        return 'rho = {}'.format(self.rho)

    def forward(self, residual):
        squared_res = residual ** 2
        dist = torch.div(squared_res, squared_res + self.rho ** 2)
        return self.rho ** 2 * dist

class PerspectiveCamera(nn.Module):

    FOCAL_LENGTH = 50*128

    def __init__(self, rotation=None, translation=None,
                 focal_length_x=None, focal_length_y=None,
                 batch_size=1,
                 center=None, dtype=torch.float32):
        super(PerspectiveCamera, self).__init__()
        self.batch_size = batch_size
        self.dtype = dtype
        # Make a buffer so that PyTorch does not complain when creating
        # the camera matrix
        self.register_buffer('zero',
                             torch.zeros([batch_size], dtype=dtype))

        if focal_length_x is None or type(focal_length_x) == float:
            focal_length_x = torch.full(
                [batch_size],
                self.FOCAL_LENGTH if focal_length_x is None else
                focal_length_x,
                dtype=dtype)

        if focal_length_y is None or type(focal_length_y) == float:
            focal_length_y = torch.full(
                [batch_size],
                self.FOCAL_LENGTH if focal_length_y is None else
                focal_length_y,
                dtype=dtype)

        self.register_buffer('focal_length_x', focal_length_x)
        self.register_buffer('focal_length_y', focal_length_y)

        if center is None:
            center = torch.zeros([batch_size, 2], dtype=dtype)
        self.register_buffer('center', center)

        if rotation is None:
            rotation = torch.eye(
                3, dtype=dtype).unsqueeze(dim=0).repeat(batch_size, 1, 1)

        rotation = nn.Parameter(rotation, requires_grad=False)
        self.register_parameter('rotation', rotation)

        if translation is None:
            translation = torch.zeros([batch_size, 3], dtype=dtype)

        translation = nn.Parameter(translation,
                                   requires_grad=True)
        self.register_parameter('translation', translation)

    def forward(self, points):
        device = points.device
        with torch.no_grad():
            camera_mat = torch.zeros([self.batch_size, 2, 2],
                                     dtype=self.dtype, device=points.device)
            camera_mat[:, 0, 0] = self.focal_length_x
            camera_mat[:, 1, 1] = self.focal_length_y

        camera_transform = transform_mat(self.rotation,
                                         self.translation.unsqueeze(dim=-1))

        homog_coord = torch.ones(list(points.shape)[:-1] + [1],
                                 dtype=points.dtype,
                                 device=device)
        # Convert the points to homogeneous coordinates
        points_h = torch.cat([points, homog_coord], dim=-1)

        projected_points = torch.einsum('bki,bji->bjk',
                                        [camera_transform, points_h])

        img_points = torch.div(projected_points[:, :, :2],
                               projected_points[:, :, 2].unsqueeze(dim=-1))
        img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) \
            + self.center.unsqueeze(dim=1)
        return img_points
    
class Renderer():
    
    def __init__(self, principal_point=None, img_size=None, cam_intrinsic = None):
    
        super().__init__()

        self.device = torch.device("cuda:0")
        torch.cuda.set_device(self.device)
        self.cam_intrinsic = cam_intrinsic
        self.image_size = img_size
        self.render_img_size = np.max(img_size)

        principal_point = [-(self.cam_intrinsic[0,2]-self.image_size[1]/2.)/(self.image_size[1]/2.), -(self.cam_intrinsic[1,2]-self.image_size[0]/2.)/(self.image_size[0]/2.)]  
        self.principal_point = torch.tensor(principal_point, device=self.device).unsqueeze(0)

        self.cam_R = torch.from_numpy(np.array([[-1., 0., 0.],
                                                [0., -1., 0.],
                                                [0., 0., 1.]])).cuda().float().unsqueeze(0)

        self.cam_T = torch.zeros((1,3)).cuda().float()

        half_max_length = max(self.cam_intrinsic[0:2,2])
        self.focal_length = torch.tensor([(self.cam_intrinsic[0,0]/half_max_length).astype(np.float32), \
                                          (self.cam_intrinsic[1,1]/half_max_length).astype(np.float32)]).unsqueeze(0)
        
        self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)

        self.lights = PointLights(device=self.device,location=[[0.0, 0.0, 0.0]], ambient_color=((1,1,1),),diffuse_color=((0,0,0),),specular_color=((0,0,0),))

        self.raster_settings = RasterizationSettings(image_size=self.render_img_size, faces_per_pixel=10, blur_radius=0, max_faces_per_bin=30000)
        self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)

        self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)

        self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)
    
    def set_camera(self, R, T):
        self.cam_R = R
        self.cam_T = T
        self.cam_R[:, :2, :] *= -1.0
        self.cam_T[:, :2] *= -1.0
        self.cam_R = torch.transpose(self.cam_R,1,2)
        self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)
        self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)
        self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)
        self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)

    def render_mesh_recon(self, verts, faces, R=None, T=None, colors=None, mode='npat'):
        '''
        mode: normal, phong, texture
        '''
        with torch.no_grad():

            mesh = Meshes(verts, faces)

            normals = torch.stack(mesh.verts_normals_list())
            front_light = -torch.tensor([0,0,-1]).float().to(verts.device)
            shades = (normals * front_light.view(1,1,3)).sum(-1).clamp(min=0).unsqueeze(-1).expand(-1,-1,3)
            results = []
            # shading
            if 'p' in mode:
                mesh_shading = Meshes(verts, faces, textures=Textures(verts_rgb=shades))
                image_phong = self.renderer(mesh_shading)
                results.append(image_phong)
            # normal
            if 'n' in mode:
                normals_vis = normals* 0.5 + 0.5
                normals_vis = normals_vis[:,:,[2,1,0]]
                mesh_normal = Meshes(verts, faces, textures=Textures(verts_rgb=normals_vis))
                image_normal = self.renderer(mesh_normal)
                results.append(image_normal)
            return  torch.cat(results, axis=1)