File size: 13,670 Bytes
6325697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import numpy as np
import pickle as pkl
import torch
import trimesh
import cv2
import os
from tqdm import tqdm
import glob
import argparse
from preprocessing_utils import (smpl_to_pose, PerspectiveCamera, Renderer, render_trimesh, \
                                estimate_translation_cv2, transform_smpl)
from loss import joints_2d_loss, pose_temporal_loss, get_loss_weights

def main(args):
    device = torch.device("cuda:0")
    seq = args.seq
    gender = args.gender
    DIR = './raw_data'
    img_dir = f'{DIR}/{seq}/frames'   
    romp_file_dir = f'{DIR}/{seq}/ROMP'
    img_paths = sorted(glob.glob(f"{img_dir}/*.png"))
    romp_file_paths = sorted(glob.glob(f"{romp_file_dir}/*.npz"))

    from smplx import SMPL
    smpl_model = SMPL('../code/lib/smpl/smpl_model', gender=gender).to(device)
    
    input_img = cv2.imread(img_paths[0])
    if args.source == 'custom':
        focal_length = max(input_img.shape[0], input_img.shape[1])
        cam_intrinsics = np.array([[focal_length, 0., input_img.shape[1]//2],
                                   [0., focal_length, input_img.shape[0]//2],
                                   [0., 0., 1.]])
    elif args.source == 'neuman':
        NeuMan_DIR = '' # path to NeuMan dataset
        with open(f'{NeuMan_DIR}/{seq}/sparse/cameras.txt') as f:
            lines = f.readlines()
        cam_params = lines[3].split()
        cam_intrinsics = np.array([[float(cam_params[4]), 0., float(cam_params[6])], 
                                   [0., float(cam_params[5]), float(cam_params[7])], 
                                   [0., 0., 1.]])
    elif args.source == 'deepcap':
        DeepCap_DIR = '' # path to DeepCap dataset
        with open(f'{DeepCap_DIR}/monocularCalibrationBM.calibration') as f:
            lines = f.readlines()

        cam_params = lines[5].split()
        cam_intrinsics = np.array([[float(cam_params[1]), 0., float(cam_params[3])], 
                                   [0., float(cam_params[6]), float(cam_params[7])], 
                                   [0., 0., 1.]])
    else:
        print('Please specify the source of the dataset (custom, neuman, deepcap). We will continue to update the sources in the future.')
        raise NotImplementedError
    renderer = Renderer(img_size = [input_img.shape[0], input_img.shape[1]], cam_intrinsic=cam_intrinsics)

    if args.mode == 'mask':
        if not os.path.exists(f'{DIR}/{seq}/init_mask'):
            os.makedirs(f'{DIR}/{seq}/init_mask')
    elif args.mode == 'refine':
        if not os.path.exists(f'{DIR}/{seq}/init_refined_smpl'):
            os.makedirs(f'{DIR}/{seq}/init_refined_smpl')
        if not os.path.exists(f'{DIR}/{seq}/init_refined_mask'):
            os.makedirs(f'{DIR}/{seq}/init_refined_mask')
        if not os.path.exists(f'{DIR}/{seq}/init_refined_smpl_files'):
            os.makedirs(f'{DIR}/{seq}/init_refined_smpl_files')
        openpose_dir = f'{DIR}/{seq}/openpose'
        openpose_paths = sorted(glob.glob(f"{openpose_dir}/*.npy"))
        opt_num_iters=150
        weight_dict = get_loss_weights()
        cam = PerspectiveCamera(focal_length_x=torch.tensor(cam_intrinsics[0, 0], dtype=torch.float32),
                                focal_length_y=torch.tensor(cam_intrinsics[1, 1], dtype=torch.float32),
                                center=torch.tensor(cam_intrinsics[0:2, 2]).unsqueeze(0)).to(device)
        mean_shape = []
        smpl2op_mapping = torch.tensor(smpl_to_pose(model_type='smpl', use_hands=False, use_face=False,
                                            use_face_contour=False, openpose_format='coco25'), dtype=torch.long).cuda()
    elif args.mode == 'final':
        refined_smpl_dir = f'{DIR}/{seq}/init_refined_smpl_files'
        refined_smpl_mask_dir = f'{DIR}/{seq}/init_refined_mask'
        refined_smpl_paths = sorted(glob.glob(f"{refined_smpl_dir}/*.pkl"))
        refined_smpl_mask_paths = sorted(glob.glob(f"{refined_smpl_mask_dir}/*.png"))

        save_dir = f'../data/{seq}'
        if not os.path.exists(os.path.join(save_dir, 'image')):
            os.makedirs(os.path.join(save_dir, 'image'))
        if not os.path.exists(os.path.join(save_dir, 'mask')):
            os.makedirs(os.path.join(save_dir, 'mask'))

        scale_factor = args.scale_factor
        smpl_shape = np.load(f'{DIR}/{seq}/mean_shape.npy')
        T_hip = smpl_model.get_T_hip(betas=torch.tensor(smpl_shape)[None].float().to(device)).squeeze().cpu().numpy()

        K = np.eye(4)
        K[:3, :3] = cam_intrinsics
        K[0, 0] = K[0, 0] / scale_factor
        K[1, 1] = K[1, 1] / scale_factor
        K[0, 2] = K[0, 2] / scale_factor
        K[1, 2] = K[1, 2] / scale_factor

        dial_kernel = np.ones((20, 20),np.uint8)

        output_trans = []
        output_pose = []
        output_P = {}

    last_j3d = None
    actor_id = 0
    cam_extrinsics = np.eye(4)
    R = torch.tensor(cam_extrinsics[:3,:3])[None].float()
    T = torch.tensor(cam_extrinsics[:3, 3])[None].float() 
    for idx, img_path in enumerate(tqdm(img_paths)):
        input_img = cv2.imread(img_path)
        if args.mode == 'mask' or args.mode == 'refine':
            seq_file = np.load(romp_file_paths[idx], allow_pickle=True)['results'][()]
            
            # tracking in case of two persons or wrong ROMP detection
            if len(seq_file['smpl_thetas']) >= 2:
                dist = []
                if idx == 0:
                    last_j3d = seq_file['joints'][actor_id]
                for i in range(len(seq_file['smpl_thetas'])):
                    dist.append(np.linalg.norm(seq_file['joints'][i].mean(0) - last_j3d.mean(0, keepdims=True)))
                actor_id = np.argmin(dist)
            smpl_verts = seq_file['verts'][actor_id]
            pj2d_org = seq_file['pj2d_org'][actor_id]
            joints3d = seq_file['joints'][actor_id]
            last_j3d = joints3d.copy()
            tra_pred = estimate_translation_cv2(joints3d, pj2d_org, proj_mat=cam_intrinsics)
            
            smpl_verts += tra_pred

            if args.mode == 'refine':
                openpose = np.load(openpose_paths[idx])
                openpose_j2d = torch.tensor(openpose[:, :2][None], dtype=torch.float32, requires_grad=False, device=device)
                openpose_conf = torch.tensor(openpose[:, -1][None], dtype=torch.float32, requires_grad=False, device=device)

                smpl_shape = seq_file['smpl_betas'][actor_id][:10]
                smpl_pose = seq_file['smpl_thetas'][actor_id]
                smpl_trans = tra_pred

                opt_betas = torch.tensor(smpl_shape[None], dtype=torch.float32, requires_grad=True, device=device)
                opt_pose = torch.tensor(smpl_pose[None], dtype=torch.float32, requires_grad=True, device=device)
                opt_trans = torch.tensor(smpl_trans[None], dtype=torch.float32, requires_grad=True, device=device)

                opt_params = [{'params': opt_betas, 'lr': 1e-3},
                            {'params': opt_pose, 'lr': 1e-3},
                            {'params': opt_trans, 'lr': 1e-3}]
                optimizer = torch.optim.Adam(opt_params, lr=2e-3, betas=(0.9, 0.999))
                if idx == 0:
                    last_pose = [opt_pose.detach().clone()]
                loop = tqdm(range(opt_num_iters))
                for it in loop:
                    optimizer.zero_grad()

                    smpl_output = smpl_model(betas=opt_betas,
                                             body_pose=opt_pose[:,3:],
                                             global_orient=opt_pose[:,:3],
                                             transl=opt_trans)
                    smpl_verts = smpl_output.vertices.data.cpu().numpy().squeeze()

                    smpl_joints_2d = cam(torch.index_select(smpl_output.joints, 1, smpl2op_mapping))
                    
                    loss = dict()
                    loss['J2D_Loss'] = joints_2d_loss(openpose_j2d, smpl_joints_2d, openpose_conf)
                    loss['Temporal_Loss'] = pose_temporal_loss(last_pose[0], opt_pose)
                    w_loss = dict()
                    for k in loss:
                        w_loss[k] = weight_dict[k](loss[k], it)
                    
                    tot_loss = list(w_loss.values())
                    tot_loss = torch.stack(tot_loss).sum()
                    tot_loss.backward()
                    optimizer.step()

                    l_str = 'Iter: %d' % it
                    for k in loss:
                        l_str += ', %s: %0.4f' % (k, weight_dict[k](loss[k], it).mean().item())
                        loop.set_description(l_str)

            smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False)
            R = torch.tensor(cam_extrinsics[:3,:3])[None].float()
            T = torch.tensor(cam_extrinsics[:3, 3])[None].float() 
            rendered_image = render_trimesh(renderer, smpl_mesh, R, T, 'n')
            if input_img.shape[0] < input_img.shape[1]:
                rendered_image = rendered_image[abs(input_img.shape[0]-input_img.shape[1])//2:(input_img.shape[0]+input_img.shape[1])//2,...] 
            else:
                rendered_image = rendered_image[:,abs(input_img.shape[0]-input_img.shape[1])//2:(input_img.shape[0]+input_img.shape[1])//2]   
            valid_mask = (rendered_image[:,:,-1] > 0)[:, :, np.newaxis]
            
            if args.mode == 'mask':
                cv2.imwrite(os.path.join(f'{DIR}/{seq}/init_mask', '%04d.png' % idx), valid_mask*255)
            elif args.mode == 'refine':
                output_img = (rendered_image[:,:,:-1] * valid_mask + input_img * (1 - valid_mask)).astype(np.uint8)
                cv2.imwrite(os.path.join(f'{DIR}/{seq}/init_refined_smpl', '%04d.png' % idx), output_img)
                cv2.imwrite(os.path.join(f'{DIR}/{seq}/init_refined_mask', '%04d.png' % idx), valid_mask*255)
                last_pose.pop(0)
                last_pose.append(opt_pose.detach().clone())
                smpl_dict = {}
                smpl_dict['pose'] = opt_pose.data.squeeze().cpu().numpy()
                smpl_dict['trans'] = opt_trans.data.squeeze().cpu().numpy()
                smpl_dict['shape'] = opt_betas.data.squeeze().cpu().numpy()

                mean_shape.append(smpl_dict['shape'])
                pkl.dump(smpl_dict, open(os.path.join(f'{DIR}/{seq}/init_refined_smpl_files', '%04d.pkl' % idx), 'wb'))
        elif args.mode == 'final':
            input_img = cv2.resize(input_img, (input_img.shape[1] // scale_factor, input_img.shape[0] // scale_factor))
            seq_file = pkl.load(open(refined_smpl_paths[idx], 'rb'))

            mask = cv2.imread(refined_smpl_mask_paths[idx])
            mask = cv2.resize(mask, (mask.shape[1] // scale_factor, mask.shape[0] // scale_factor))

            # dilate mask to obtain a coarse bbox
            mask = cv2.dilate(mask, dial_kernel)

            cv2.imwrite(os.path.join(save_dir, 'image/%04d.png' % idx), input_img)
            cv2.imwrite(os.path.join(save_dir, 'mask/%04d.png' % idx), mask)

            smpl_pose = seq_file['pose']
            smpl_trans = seq_file['trans']

            # transform the spaces such that our camera has the same orientation as the OpenGL camera
            target_extrinsic = np.eye(4)
            target_extrinsic[1:3] *= -1
            target_extrinsic, smpl_pose, smpl_trans = transform_smpl(cam_extrinsics, target_extrinsic, smpl_pose, smpl_trans, T_hip)
            smpl_output = smpl_model(betas=torch.tensor(smpl_shape)[None].float().to(device),
                                     body_pose=torch.tensor(smpl_pose[3:])[None].float().to(device),
                                     global_orient=torch.tensor(smpl_pose[:3])[None].float().to(device),
                                     transl=torch.tensor(smpl_trans)[None].float().to(device))
            smpl_verts = smpl_output.vertices.data.cpu().numpy().squeeze()

            # we need to center the human for every frame due to the potentially large global movement
            v_max = smpl_verts.max(axis=0)
            v_min = smpl_verts.min(axis=0)
            normalize_shift = -(v_max + v_min) / 2.

            trans = smpl_trans + normalize_shift
            
            target_extrinsic[:3, -1] = target_extrinsic[:3, -1] - (target_extrinsic[:3, :3] @ normalize_shift)

            P = K @ target_extrinsic
            output_trans.append(trans)
            output_pose.append(smpl_pose)
            output_P[f"cam_{idx}"] = P

    if args.mode == 'refine':
        mean_shape = np.array(mean_shape)
        np.save(f'{DIR}/{seq}/mean_shape.npy', mean_shape.mean(0))
    if args.mode == 'final':
        np.save(os.path.join(save_dir, 'poses.npy'), np.array(output_pose))
        np.save(os.path.join(save_dir, 'mean_shape.npy'), smpl_shape)
        np.save(os.path.join(save_dir, 'normalize_trans.npy'), np.array(output_trans))
        np.savez(os.path.join(save_dir, "cameras.npz"), **output_P)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Preprocessing data")
    # video source
    parser.add_argument('--source', type=str, default='custom', help="custom video or dataset video")
    # sequence name
    parser.add_argument('--seq', type=str)
    # gender
    parser.add_argument('--gender', type=str, help="gender of the actor: MALE or FEMALE")
    # mode
    parser.add_argument('--mode', type=str, help="mask mode or refine mode: mask or refine or final")
    # scale factor for the input image
    parser.add_argument('--scale_factor', type=int, default=2, help="scale factor for the input image")
    args = parser.parse_args()
    main(args)