File size: 15,098 Bytes
6325697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import pytorch_lightning as pl
import torch.optim as optim
from lib.model.v2a import V2A
from lib.model.body_model_params import BodyModelParams
from lib.model.deformer import SMPLDeformer
import cv2
import torch
from lib.model.loss import Loss
import hydra
import os
import numpy as np
from lib.utils.meshing import generate_mesh
from kaolin.ops.mesh import index_vertices_by_faces
import trimesh
from lib.model.deformer import skinning
from lib.utils import utils
class V2AModel(pl.LightningModule):
    def __init__(self, opt) -> None:
        super().__init__()

        self.opt = opt
        num_training_frames = opt.dataset.metainfo.end_frame - opt.dataset.metainfo.start_frame
        self.betas_path = os.path.join(hydra.utils.to_absolute_path('..'), 'data', opt.dataset.metainfo.data_dir, 'mean_shape.npy')
        self.gender = opt.dataset.metainfo.gender
        self.model = V2A(opt.model, self.betas_path, self.gender, num_training_frames)
        self.start_frame = opt.dataset.metainfo.start_frame
        self.end_frame = opt.dataset.metainfo.end_frame
        self.training_modules = ["model"]

        self.training_indices = list(range(self.start_frame, self.end_frame))
        self.body_model_params = BodyModelParams(num_training_frames, model_type='smpl')
        self.load_body_model_params()
        optim_params = self.body_model_params.param_names
        for param_name in optim_params:
            self.body_model_params.set_requires_grad(param_name, requires_grad=True)
        self.training_modules += ['body_model_params']
        
        self.loss = Loss(opt.model.loss)
        
    def load_body_model_params(self):
        body_model_params = {param_name: [] for param_name in self.body_model_params.param_names}
        data_root = os.path.join('../data', self.opt.dataset.metainfo.data_dir)
        data_root = hydra.utils.to_absolute_path(data_root)

        body_model_params['betas'] = torch.tensor(np.load(os.path.join(data_root, 'mean_shape.npy'))[None], dtype=torch.float32)
        body_model_params['global_orient'] = torch.tensor(np.load(os.path.join(data_root, 'poses.npy'))[self.training_indices][:, :3], dtype=torch.float32)
        body_model_params['body_pose'] = torch.tensor(np.load(os.path.join(data_root, 'poses.npy'))[self.training_indices] [:, 3:], dtype=torch.float32)
        body_model_params['transl'] = torch.tensor(np.load(os.path.join(data_root, 'normalize_trans.npy'))[self.training_indices], dtype=torch.float32)

        for param_name in body_model_params.keys():
            self.body_model_params.init_parameters(param_name, body_model_params[param_name], requires_grad=False) 

    def configure_optimizers(self):
        params = [{'params': self.model.parameters(), 'lr':self.opt.model.learning_rate}]
        params.append({'params': self.body_model_params.parameters(), 'lr':self.opt.model.learning_rate*0.1})
        self.optimizer = optim.Adam(params, lr=self.opt.model.learning_rate, eps=1e-8)
        self.scheduler = optim.lr_scheduler.MultiStepLR(
            self.optimizer, milestones=self.opt.model.sched_milestones, gamma=self.opt.model.sched_factor)
        return [self.optimizer], [self.scheduler]

    def training_step(self, batch):
        inputs, targets = batch

        batch_idx = inputs["idx"]

        body_model_params = self.body_model_params(batch_idx)
        inputs['smpl_pose'] = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
        inputs['smpl_shape'] = body_model_params['betas']
        inputs['smpl_trans'] = body_model_params['transl']

        inputs['current_epoch'] = self.current_epoch
        model_outputs = self.model(inputs)

        loss_output = self.loss(model_outputs, targets)
        for k, v in loss_output.items():
            if k in ["loss"]:
                self.log(k, v.item(), prog_bar=True, on_step=True)
            else:
                self.log(k, v.item(), prog_bar=True, on_step=True)
        return loss_output["loss"]

    def training_epoch_end(self, outputs) -> None:        
        # Canonical mesh update every 20 epochs
        if self.current_epoch != 0 and self.current_epoch % 20 == 0:
            cond = {'smpl': torch.zeros(1, 69).float().cuda()}
            mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=2)
            self.model.mesh_v_cano = torch.tensor(mesh_canonical.vertices[None], device = self.model.smpl_v_cano.device).float()
            self.model.mesh_f_cano = torch.tensor(mesh_canonical.faces.astype(np.int64), device=self.model.smpl_v_cano.device)
            self.model.mesh_face_vertices = index_vertices_by_faces(self.model.mesh_v_cano, self.model.mesh_f_cano)
        return super().training_epoch_end(outputs)

    def query_oc(self, x, cond):
        
        x = x.reshape(-1, 3)
        mnfld_pred = self.model.implicit_network(x, cond)[:,:,0].reshape(-1,1)
        return {'sdf':mnfld_pred}

    def query_wc(self, x):
        
        x = x.reshape(-1, 3)
        w = self.model.deformer.query_weights(x)
    
        return w

    def query_od(self, x, cond, smpl_tfs, smpl_verts):
        
        x = x.reshape(-1, 3)
        x_c, _ = self.model.deformer.forward(x, smpl_tfs, return_weights=False, inverse=True, smpl_verts=smpl_verts)
        output = self.model.implicit_network(x_c, cond)[0]
        sdf = output[:, 0:1]
        
        return {'sdf': sdf}

    def get_deformed_mesh_fast_mode(self, verts, smpl_tfs):
        verts = torch.tensor(verts).cuda().float()
        weights = self.model.deformer.query_weights(verts)
        verts_deformed = skinning(verts.unsqueeze(0),  weights, smpl_tfs).data.cpu().numpy()[0]
        return verts_deformed

    def validation_step(self, batch, *args, **kwargs):

        output = {}
        inputs, targets = batch
        inputs['current_epoch'] = self.current_epoch
        self.model.eval()

        body_model_params = self.body_model_params(inputs['image_id'])
        inputs['smpl_pose'] = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)
        inputs['smpl_shape'] = body_model_params['betas']
        inputs['smpl_trans'] = body_model_params['transl']

        cond = {'smpl': inputs["smpl_pose"][:, 3:]/np.pi}
        mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=3)
        
        mesh_canonical = trimesh.Trimesh(mesh_canonical.vertices, mesh_canonical.faces)
        
        output.update({
            'canonical_mesh':mesh_canonical
        })

        split = utils.split_input(inputs, targets["total_pixels"][0], n_pixels=min(targets['pixel_per_batch'], targets["img_size"][0] * targets["img_size"][1]))

        res = []
        for s in split:

            out = self.model(s)

            for k, v in out.items():
                try:
                    out[k] = v.detach()
                except:
                    out[k] = v

            res.append({
                'rgb_values': out['rgb_values'].detach(),
                'normal_values': out['normal_values'].detach(),
                'fg_rgb_values': out['fg_rgb_values'].detach(),
            })
        batch_size = targets['rgb'].shape[0]

        model_outputs = utils.merge_output(res, targets["total_pixels"][0], batch_size)

        output.update({
            "rgb_values": model_outputs["rgb_values"].detach().clone(),
            "normal_values": model_outputs["normal_values"].detach().clone(),
            "fg_rgb_values": model_outputs["fg_rgb_values"].detach().clone(),
            **targets,
        })
            
        return output

    def validation_step_end(self, batch_parts):
        return batch_parts

    def validation_epoch_end(self, outputs) -> None:
        img_size = outputs[0]["img_size"]

        rgb_pred = torch.cat([output["rgb_values"] for output in outputs], dim=0)
        rgb_pred = rgb_pred.reshape(*img_size, -1)

        fg_rgb_pred = torch.cat([output["fg_rgb_values"] for output in outputs], dim=0)
        fg_rgb_pred = fg_rgb_pred.reshape(*img_size, -1)

        normal_pred = torch.cat([output["normal_values"] for output in outputs], dim=0)
        normal_pred = (normal_pred.reshape(*img_size, -1) + 1) / 2

        rgb_gt = torch.cat([output["rgb"] for output in outputs], dim=1).squeeze(0)
        rgb_gt = rgb_gt.reshape(*img_size, -1)
        if 'normal' in outputs[0].keys():
            normal_gt = torch.cat([output["normal"] for output in outputs], dim=1).squeeze(0)
            normal_gt = (normal_gt.reshape(*img_size, -1) + 1) / 2
            normal = torch.cat([normal_gt, normal_pred], dim=0).cpu().numpy()
        else:
            normal = torch.cat([normal_pred], dim=0).cpu().numpy()

        rgb = torch.cat([rgb_gt, rgb_pred], dim=0).cpu().numpy()
        rgb = (rgb * 255).astype(np.uint8)

        fg_rgb = torch.cat([fg_rgb_pred], dim=0).cpu().numpy()
        fg_rgb = (fg_rgb * 255).astype(np.uint8)

        normal = (normal * 255).astype(np.uint8)

        os.makedirs("rendering", exist_ok=True)
        os.makedirs("normal", exist_ok=True)
        os.makedirs('fg_rendering', exist_ok=True)

        canonical_mesh = outputs[0]['canonical_mesh']
        canonical_mesh.export(f"rendering/{self.current_epoch}.ply")

        cv2.imwrite(f"rendering/{self.current_epoch}.png", rgb[:, :, ::-1])
        cv2.imwrite(f"normal/{self.current_epoch}.png", normal[:, :, ::-1])
        cv2.imwrite(f"fg_rendering/{self.current_epoch}.png", fg_rgb[:, :, ::-1])
    
    def test_step(self, batch, *args, **kwargs):
        inputs, targets, pixel_per_batch, total_pixels, idx = batch
        num_splits = (total_pixels + pixel_per_batch -
                       1) // pixel_per_batch
        results = []

        scale, smpl_trans, smpl_pose, smpl_shape = torch.split(inputs["smpl_params"], [1, 3, 72, 10], dim=1)

        body_model_params = self.body_model_params(inputs['idx'])
        smpl_shape = body_model_params['betas'] if body_model_params['betas'].dim() == 2 else body_model_params['betas'].unsqueeze(0)
        smpl_trans = body_model_params['transl']
        smpl_pose = torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)

        smpl_outputs = self.model.smpl_server(scale, smpl_trans, smpl_pose, smpl_shape)
        smpl_tfs = smpl_outputs['smpl_tfs']
        cond = {'smpl': smpl_pose[:, 3:]/np.pi}

        mesh_canonical = generate_mesh(lambda x: self.query_oc(x, cond), self.model.smpl_server.verts_c[0], point_batch=10000, res_up=4)
        self.model.deformer = SMPLDeformer(betas=np.load(self.betas_path), gender=self.gender, K=7)
        verts_deformed = self.get_deformed_mesh_fast_mode(mesh_canonical.vertices, smpl_tfs)
        mesh_deformed = trimesh.Trimesh(vertices=verts_deformed, faces=mesh_canonical.faces, process=False)

        os.makedirs("test_mask", exist_ok=True)
        os.makedirs("test_rendering", exist_ok=True)
        os.makedirs("test_fg_rendering", exist_ok=True)
        os.makedirs("test_normal", exist_ok=True)
        os.makedirs("test_mesh", exist_ok=True)
        
        mesh_canonical.export(f"test_mesh/{int(idx.cpu().numpy()):04d}_canonical.ply")
        mesh_deformed.export(f"test_mesh/{int(idx.cpu().numpy()):04d}_deformed.ply")
        self.model.deformer = SMPLDeformer(betas=np.load(self.betas_path), gender=self.gender)
        for i in range(num_splits):
            indices = list(range(i * pixel_per_batch,
                                min((i + 1) * pixel_per_batch, total_pixels)))
            batch_inputs = {"uv": inputs["uv"][:, indices],
                            "intrinsics": inputs['intrinsics'],
                            "pose": inputs['pose'],
                            "smpl_params": inputs["smpl_params"],
                            "smpl_pose": inputs["smpl_params"][:, 4:76],
                            "smpl_shape": inputs["smpl_params"][:, 76:],
                            "smpl_trans": inputs["smpl_params"][:, 1:4],
                            "idx": inputs["idx"] if 'idx' in inputs.keys() else None}

            body_model_params = self.body_model_params(inputs['idx'])

            batch_inputs.update({'smpl_pose': torch.cat((body_model_params['global_orient'], body_model_params['body_pose']), dim=1)})
            batch_inputs.update({'smpl_shape': body_model_params['betas']})
            batch_inputs.update({'smpl_trans': body_model_params['transl']})

            batch_targets = {"rgb": targets["rgb"][:, indices].detach().clone() if 'rgb' in targets.keys() else None,
                             "img_size": targets["img_size"]}

            with torch.no_grad():
                model_outputs = self.model(batch_inputs)
            results.append({"rgb_values":model_outputs["rgb_values"].detach().clone(), 
                            "fg_rgb_values":model_outputs["fg_rgb_values"].detach().clone(),
                            "normal_values": model_outputs["normal_values"].detach().clone(),
                            "acc_map": model_outputs["acc_map"].detach().clone(),
                            **batch_targets})         

        img_size = results[0]["img_size"]
        rgb_pred = torch.cat([result["rgb_values"] for result in results], dim=0)
        rgb_pred = rgb_pred.reshape(*img_size, -1)

        fg_rgb_pred = torch.cat([result["fg_rgb_values"] for result in results], dim=0)
        fg_rgb_pred = fg_rgb_pred.reshape(*img_size, -1)

        normal_pred = torch.cat([result["normal_values"] for result in results], dim=0)
        normal_pred = (normal_pred.reshape(*img_size, -1) + 1) / 2

        pred_mask = torch.cat([result["acc_map"] for result in results], dim=0)
        pred_mask = pred_mask.reshape(*img_size, -1)

        if results[0]['rgb'] is not None:
            rgb_gt = torch.cat([result["rgb"] for result in results], dim=1).squeeze(0)
            rgb_gt = rgb_gt.reshape(*img_size, -1)
            rgb = torch.cat([rgb_gt, rgb_pred], dim=0).cpu().numpy()
        else:
            rgb = torch.cat([rgb_pred], dim=0).cpu().numpy()
        if 'normal' in results[0].keys():
            normal_gt = torch.cat([result["normal"] for result in results], dim=1).squeeze(0)
            normal_gt = (normal_gt.reshape(*img_size, -1) + 1) / 2
            normal = torch.cat([normal_gt, normal_pred], dim=0).cpu().numpy()
        else:
            normal = torch.cat([normal_pred], dim=0).cpu().numpy()
        
        rgb = (rgb * 255).astype(np.uint8)

        fg_rgb = torch.cat([fg_rgb_pred], dim=0).cpu().numpy()
        fg_rgb = (fg_rgb * 255).astype(np.uint8)

        normal = (normal * 255).astype(np.uint8)

        cv2.imwrite(f"test_mask/{int(idx.cpu().numpy()):04d}.png", pred_mask.cpu().numpy() * 255)
        cv2.imwrite(f"test_rendering/{int(idx.cpu().numpy()):04d}.png", rgb[:, :, ::-1])
        cv2.imwrite(f"test_normal/{int(idx.cpu().numpy()):04d}.png", normal[:, :, ::-1])
        cv2.imwrite(f"test_fg_rendering/{int(idx.cpu().numpy()):04d}.png", fg_rgb[:, :, ::-1])