File size: 15,222 Bytes
6325697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems and the Max Planck Institute for Biological
# Cybernetics. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import os
import os.path as osp


import pickle

import numpy as np

from collections import namedtuple

import torch
import torch.nn as nn

from .lbs import (
    lbs, vertices2joints, blend_shapes)

from .vertex_ids import vertex_ids as VERTEX_IDS
from .utils import Struct, to_np, to_tensor
from .vertex_joint_selector import VertexJointSelector


ModelOutput = namedtuple('ModelOutput',
                         ['vertices','faces', 'joints', 'full_pose', 'betas',
                          'global_orient',
                          'body_pose', 'expression',
                          'left_hand_pose', 'right_hand_pose',
                          'jaw_pose', 'T', 'T_weighted', 'weights'])
ModelOutput.__new__.__defaults__ = (None,) * len(ModelOutput._fields)

class SMPL(nn.Module):

    NUM_JOINTS = 23
    NUM_BODY_JOINTS = 23
    NUM_BETAS = 10

    def __init__(self, model_path, data_struct=None,
                 create_betas=True,
                 betas=None,
                 create_global_orient=True,
                 global_orient=None,
                 create_body_pose=True,
                 body_pose=None,
                 create_transl=True,
                 transl=None,
                 dtype=torch.float32,
                 batch_size=1,
                 joint_mapper=None, gender='neutral',
                 vertex_ids=None,
                 pose_blend=True,
                 **kwargs):
        ''' SMPL model constructor

            Parameters
            ----------
            model_path: str
                The path to the folder or to the file where the model
                parameters are stored
            data_struct: Strct
                A struct object. If given, then the parameters of the model are
                read from the object. Otherwise, the model tries to read the
                parameters from the given `model_path`. (default = None)
            create_global_orient: bool, optional
                Flag for creating a member variable for the global orientation
                of the body. (default = True)
            global_orient: torch.tensor, optional, Bx3
                The default value for the global orientation variable.
                (default = None)
            create_body_pose: bool, optional
                Flag for creating a member variable for the pose of the body.
                (default = True)
            body_pose: torch.tensor, optional, Bx(Body Joints * 3)
                The default value for the body pose variable.
                (default = None)
            create_betas: bool, optional
                Flag for creating a member variable for the shape space
                (default = True).
            betas: torch.tensor, optional, Bx10
                The default value for the shape member variable.
                (default = None)
            create_transl: bool, optional
                Flag for creating a member variable for the translation
                of the body. (default = True)
            transl: torch.tensor, optional, Bx3
                The default value for the transl variable.
                (default = None)
            dtype: torch.dtype, optional
                The data type for the created variables
            batch_size: int, optional
                The batch size used for creating the member variables
            joint_mapper: object, optional
                An object that re-maps the joints. Useful if one wants to
                re-order the SMPL joints to some other convention (e.g. MSCOCO)
                (default = None)
            gender: str, optional
                Which gender to load
            vertex_ids: dict, optional
                A dictionary containing the indices of the extra vertices that
                will be selected
        '''

        self.gender = gender
        self.pose_blend = pose_blend

        if data_struct is None:
            if osp.isdir(model_path):
                model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl')
                smpl_path = os.path.join(model_path, model_fn)
            else:
                smpl_path = model_path
            assert osp.exists(smpl_path), 'Path {} does not exist!'.format(
                smpl_path)

            with open(smpl_path, 'rb') as smpl_file:
                data_struct = Struct(**pickle.load(smpl_file,encoding='latin1'))
        super(SMPL, self).__init__()
        self.batch_size = batch_size

        if vertex_ids is None:
            # SMPL and SMPL-H share the same topology, so any extra joints can
            # be drawn from the same place
            vertex_ids = VERTEX_IDS['smplh']

        self.dtype = dtype

        self.joint_mapper = joint_mapper

        self.vertex_joint_selector = VertexJointSelector(
            vertex_ids=vertex_ids, **kwargs)

        self.faces = data_struct.f
        self.register_buffer('faces_tensor',
                             to_tensor(to_np(self.faces, dtype=np.int64),
                                       dtype=torch.long))

        if create_betas:
            if betas is None:
                default_betas = torch.zeros([batch_size, self.NUM_BETAS],
                                            dtype=dtype)
            else:
                if 'torch.Tensor' in str(type(betas)):
                    default_betas = betas.clone().detach()
                else:
                    default_betas = torch.tensor(betas,
                                                 dtype=dtype)

            self.register_parameter('betas', nn.Parameter(default_betas,
                                                          requires_grad=True))

        # The tensor that contains the global rotation of the model
        # It is separated from the pose of the joints in case we wish to
        # optimize only over one of them
        if create_global_orient:
            if global_orient is None:
                default_global_orient = torch.zeros([batch_size, 3],
                                                    dtype=dtype)
            else:
                if 'torch.Tensor' in str(type(global_orient)):
                    default_global_orient = global_orient.clone().detach()
                else:
                    default_global_orient = torch.tensor(global_orient,
                                                         dtype=dtype)

            global_orient = nn.Parameter(default_global_orient,
                                         requires_grad=True)
            self.register_parameter('global_orient', global_orient)

        if create_body_pose:
            if body_pose is None:
                default_body_pose = torch.zeros(
                    [batch_size, self.NUM_BODY_JOINTS * 3], dtype=dtype)
            else:
                if 'torch.Tensor' in str(type(body_pose)):
                    default_body_pose = body_pose.clone().detach()
                else:
                    default_body_pose = torch.tensor(body_pose,
                                                     dtype=dtype)
            self.register_parameter(
                'body_pose',
                nn.Parameter(default_body_pose, requires_grad=True))

        if create_transl:
            if transl is None:
                default_transl = torch.zeros([batch_size, 3],
                                             dtype=dtype,
                                             requires_grad=True)
            else:
                default_transl = torch.tensor(transl, dtype=dtype)
            self.register_parameter(
                'transl',
                nn.Parameter(default_transl, requires_grad=True))

        # The vertices of the template model
        self.register_buffer('v_template',
                             to_tensor(to_np(data_struct.v_template),
                                       dtype=dtype))

        # The shape components
        shapedirs = data_struct.shapedirs[:, :, :self.NUM_BETAS]
        # The shape components
        self.register_buffer(
            'shapedirs',
            to_tensor(to_np(shapedirs), dtype=dtype))


        j_regressor = to_tensor(to_np(
            data_struct.J_regressor), dtype=dtype)
        self.register_buffer('J_regressor', j_regressor)

        # if self.gender == 'neutral':
        #     joint_regressor = to_tensor(to_np(
        #     data_struct.cocoplus_regressor), dtype=dtype).permute(1,0)
        #     self.register_buffer('joint_regressor', joint_regressor)

        # Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207
        num_pose_basis = data_struct.posedirs.shape[-1]
        # 207 x 20670
        posedirs = np.reshape(data_struct.posedirs, [-1, num_pose_basis]).T
        self.register_buffer('posedirs',
                             to_tensor(to_np(posedirs), dtype=dtype))

        # indices of parents for each joints
        parents = to_tensor(to_np(data_struct.kintree_table[0])).long()
        parents[0] = -1
        self.register_buffer('parents', parents)

        self.bone_parents = to_np(data_struct.kintree_table[0])

        self.register_buffer('lbs_weights',
                             to_tensor(to_np(data_struct.weights), dtype=dtype))

    def create_mean_pose(self, data_struct):
        pass

    @torch.no_grad()
    def reset_params(self, **params_dict):
        for param_name, param in self.named_parameters():
            if param_name in params_dict:
                param[:] = torch.tensor(params_dict[param_name])
            else:
                param.fill_(0)

    def get_T_hip(self, betas=None):
        v_shaped = self.v_template + blend_shapes(betas, self.shapedirs)
        J = vertices2joints(self.J_regressor, v_shaped)
        T_hip = J[0,0]
        return T_hip

    def get_num_verts(self):
        return self.v_template.shape[0]

    def get_num_faces(self):
        return self.faces.shape[0]

    def extra_repr(self):
        return 'Number of betas: {}'.format(self.NUM_BETAS)

    def forward(self, betas=None, body_pose=None, global_orient=None,
                transl=None, return_verts=True, return_full_pose=False,displacement=None,v_template=None,
                **kwargs):
        ''' Forward pass for the SMPL model

            Parameters
            ----------
            global_orient: torch.tensor, optional, shape Bx3
                If given, ignore the member variable and use it as the global
                rotation of the body. Useful if someone wishes to predicts this
                with an external model. (default=None)
            betas: torch.tensor, optional, shape Bx10
                If given, ignore the member variable `betas` and use it
                instead. For example, it can used if shape parameters
                `betas` are predicted from some external model.
                (default=None)
            body_pose: torch.tensor, optional, shape Bx(J*3)
                If given, ignore the member variable `body_pose` and use it
                instead. For example, it can used if someone predicts the
                pose of the body joints are predicted from some external model.
                It should be a tensor that contains joint rotations in
                axis-angle format. (default=None)
            transl: torch.tensor, optional, shape Bx3
                If given, ignore the member variable `transl` and use it
                instead. For example, it can used if the translation
                `transl` is predicted from some external model.
                (default=None)
            return_verts: bool, optional
                Return the vertices. (default=True)
            return_full_pose: bool, optional
                Returns the full axis-angle pose vector (default=False)

            Returns
            -------
        '''
        # If no shape and pose parameters are passed along, then use the
        # ones from the module
        global_orient = (global_orient if global_orient is not None else
                         self.global_orient)
        body_pose = body_pose if body_pose is not None else self.body_pose
        betas = betas if betas is not None else self.betas

        apply_trans = transl is not None or hasattr(self, 'transl')
        if transl is None and hasattr(self, 'transl'):
            transl = self.transl

        full_pose = torch.cat([global_orient, body_pose], dim=1)

        # if betas.shape[0] != self.batch_size:
        #     num_repeats = int(self.batch_size / betas.shape[0])
        #     betas = betas.expand(num_repeats, -1)

        if v_template is None:
            v_template = self.v_template

        if displacement is not None:
            vertices, joints_smpl, T_weighted, W, T = lbs(betas, full_pose, v_template+displacement,
                                   self.shapedirs, self.posedirs,
                                   self.J_regressor, self.parents,
                                   self.lbs_weights, dtype=self.dtype,pose_blend=self.pose_blend)
        else:
            vertices, joints_smpl,T_weighted, W, T = lbs(betas, full_pose, v_template,
                                        self.shapedirs, self.posedirs,
                                        self.J_regressor, self.parents,
                                        self.lbs_weights, dtype=self.dtype,pose_blend=self.pose_blend)

        # if self.gender is not 'neutral':
        joints = self.vertex_joint_selector(vertices, joints_smpl)
        # else:
        # joints = torch.matmul(vertices.permute(0,2,1),self.joint_regressor).permute(0,2,1)
        # Map the joints to the current dataset
        if self.joint_mapper is not None:
            joints = self.joint_mapper(joints)

        if apply_trans:
            joints_smpl = joints_smpl + transl.unsqueeze(dim=1)
            joints = joints + transl.unsqueeze(dim=1)
            vertices = vertices + transl.unsqueeze(dim=1)

        output = ModelOutput(vertices=vertices if return_verts else None,
                             faces=self.faces,
                             global_orient=global_orient,
                             body_pose=body_pose,
                             joints=joints_smpl,
                             betas=self.betas,
                             full_pose=full_pose if return_full_pose else None,
                             T=T, T_weighted=T_weighted, weights=W)
        return output