File size: 13,003 Bytes
6325697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# distutils: language = c++
cimport cython
from libc.stdint cimport int32_t, int64_t
from cython.operator cimport dereference as dref
from libcpp.vector cimport vector
from libcpp.map cimport map
from libc.math cimport isnan, NAN
import numpy as np
cdef struct Vector3D:
int x, y, z
cdef struct Voxel:
Vector3D loc
unsigned int level
bint is_leaf
unsigned long children[2][2][2]
cdef struct GridPoint:
Vector3D loc
double value
bint known
cdef inline unsigned long vec_to_idx(Vector3D coord, long resolution):
cdef unsigned long idx
idx = resolution * resolution * coord.x + resolution * coord.y + coord.z
return idx
cdef class MISE:
cdef vector[Voxel] voxels
cdef vector[GridPoint] grid_points
cdef map[long, long] grid_point_hash
cdef readonly int resolution_0
cdef readonly int depth
cdef readonly double threshold
cdef readonly int voxel_size_0
cdef readonly int resolution
def __cinit__(self, int resolution_0, int depth, double threshold):
self.resolution_0 = resolution_0
self.depth = depth
self.threshold = threshold
self.voxel_size_0 = (1 << depth)
self.resolution = resolution_0 * self.voxel_size_0
# Create initial voxels
self.voxels.reserve(resolution_0 * resolution_0 * resolution_0)
cdef Voxel voxel
cdef GridPoint point
cdef Vector3D loc
cdef int i, j, k
for i in range(resolution_0):
for j in range(resolution_0):
for k in range (resolution_0):
loc = Vector3D(
i * self.voxel_size_0,
j * self.voxel_size_0,
k * self.voxel_size_0,
)
voxel = Voxel(
loc=loc,
level=0,
is_leaf=True,
)
assert(self.voxels.size() == vec_to_idx(Vector3D(i, j, k), resolution_0))
self.voxels.push_back(voxel)
# Create initial grid points
self.grid_points.reserve((resolution_0 + 1) * (resolution_0 + 1) * (resolution_0 + 1))
for i in range(resolution_0 + 1):
for j in range(resolution_0 + 1):
for k in range(resolution_0 + 1):
loc = Vector3D(
i * self.voxel_size_0,
j * self.voxel_size_0,
k * self.voxel_size_0,
)
assert(self.grid_points.size() == vec_to_idx(Vector3D(i, j, k), resolution_0 + 1))
self.add_grid_point(loc)
def update(self, int64_t[:, :] points, double[:] values):
"""Update points and set their values. Also determine all active voxels and subdivide them."""
assert(points.shape[0] == values.shape[0])
assert(points.shape[1] == 3)
cdef Vector3D loc
cdef long idx
cdef int i
# Find all indices of point and set value
for i in range(points.shape[0]):
loc = Vector3D(points[i, 0], points[i, 1], points[i, 2])
idx = self.get_grid_point_idx(loc)
if idx == -1:
raise ValueError('Point not in grid!')
self.grid_points[idx].value = values[i]
self.grid_points[idx].known = True
# Subdivide activate voxels and add new points
self.subdivide_voxels()
def query(self):
"""Query points to evaluate."""
# Find all points with unknown value
cdef vector[Vector3D] points
cdef int n_unknown = 0
for p in self.grid_points:
if not p.known:
n_unknown += 1
points.reserve(n_unknown)
for p in self.grid_points:
if not p.known:
points.push_back(p.loc)
# Convert to numpy
points_np = np.zeros((points.size(), 3), dtype=np.int64)
cdef int64_t[:, :] points_view = points_np
for i in range(points.size()):
points_view[i, 0] = points[i].x
points_view[i, 1] = points[i].y
points_view[i, 2] = points[i].z
return points_np
def to_dense(self):
"""Output dense matrix at highest resolution."""
out_array = np.full((self.resolution + 1,) * 3, np.nan)
cdef double[:, :, :] out_view = out_array
cdef GridPoint point
cdef int i, j, k
for point in self.grid_points:
# Take voxel for which points is upper left corner
# assert(point.known)
out_view[point.loc.x, point.loc.y, point.loc.z] = point.value
# Complete along x axis
for i in range(1, self.resolution + 1):
for j in range(self.resolution + 1):
for k in range(self.resolution + 1):
if isnan(out_view[i, j, k]):
out_view[i, j, k] = out_view[i-1, j, k]
# Complete along y axis
for i in range(self.resolution + 1):
for j in range(1, self.resolution + 1):
for k in range(self.resolution + 1):
if isnan(out_view[i, j, k]):
out_view[i, j, k] = out_view[i, j-1, k]
# Complete along z axis
for i in range(self.resolution + 1):
for j in range(self.resolution + 1):
for k in range(1, self.resolution + 1):
if isnan(out_view[i, j, k]):
out_view[i, j, k] = out_view[i, j, k-1]
assert(not isnan(out_view[i, j, k]))
return out_array
def get_points(self):
points_np = np.zeros((self.grid_points.size(), 3), dtype=np.int64)
values_np = np.zeros((self.grid_points.size()), dtype=np.float64)
cdef long[:, :] points_view = points_np
cdef double[:] values_view = values_np
cdef Vector3D loc
cdef int i
for i in range(self.grid_points.size()):
loc = self.grid_points[i].loc
points_view[i, 0] = loc.x
points_view[i, 1] = loc.y
points_view[i, 2] = loc.z
values_view[i] = self.grid_points[i].value
return points_np, values_np
cdef void subdivide_voxels(self) except +:
cdef vector[bint] next_to_positive
cdef vector[bint] next_to_negative
cdef int i, j, k
cdef long idx
cdef Vector3D loc, adj_loc
# Initialize vectors
next_to_positive.resize(self.voxels.size(), False)
next_to_negative.resize(self.voxels.size(), False)
# Iterate over grid points and mark voxels active
# TODO: can move this to update operation and add attibute to voxel
for grid_point in self.grid_points:
loc = grid_point.loc
if not grid_point.known:
continue
# Iterate over the 8 adjacent voxels
for i in range(-1, 1):
for j in range(-1, 1):
for k in range(-1, 1):
adj_loc = Vector3D(
x=loc.x + i,
y=loc.y + j,
z=loc.z + k,
)
idx = self.get_voxel_idx(adj_loc)
if idx == -1:
continue
if grid_point.value >= self.threshold:
next_to_positive[idx] = True
if grid_point.value <= self.threshold:
next_to_negative[idx] = True
cdef int n_subdivide = 0
for idx in range(self.voxels.size()):
if not self.voxels[idx].is_leaf or self.voxels[idx].level == self.depth:
continue
if next_to_positive[idx] and next_to_negative[idx]:
n_subdivide += 1
self.voxels.reserve(self.voxels.size() + 8 * n_subdivide)
self.grid_points.reserve(self.voxels.size() + 19 * n_subdivide)
for idx in range(self.voxels.size()):
if not self.voxels[idx].is_leaf or self.voxels[idx].level == self.depth:
continue
if next_to_positive[idx] and next_to_negative[idx]:
self.subdivide_voxel(idx)
cdef void subdivide_voxel(self, long idx):
cdef Voxel voxel
cdef GridPoint point
cdef Vector3D loc0 = self.voxels[idx].loc
cdef Vector3D loc
cdef int new_level = self.voxels[idx].level + 1
cdef int new_size = 1 << (self.depth - new_level)
assert(new_level <= self.depth)
assert(1 <= new_size <= self.voxel_size_0)
# Current voxel is not leaf anymore
self.voxels[idx].is_leaf = False
# Add new voxels
cdef int i, j, k
for i in range(2):
for j in range(2):
for k in range(2):
loc = Vector3D(
x=loc0.x + i * new_size,
y=loc0.y + j * new_size,
z=loc0.z + k * new_size,
)
voxel = Voxel(
loc=loc,
level=new_level,
is_leaf=True
)
self.voxels[idx].children[i][j][k] = self.voxels.size()
self.voxels.push_back(voxel)
# Add new grid points
for i in range(3):
for j in range(3):
for k in range(3):
loc = Vector3D(
loc0.x + i * new_size,
loc0.y + j * new_size,
loc0.z + k * new_size,
)
# Only add new grid points
if self.get_grid_point_idx(loc) == -1:
self.add_grid_point(loc)
@cython.cdivision(True)
cdef long get_voxel_idx(self, Vector3D loc) except +:
"""Utility function for getting voxel index corresponding to 3D coordinates."""
# Shorthands
cdef long resolution = self.resolution
cdef long resolution_0 = self.resolution_0
cdef long depth = self.depth
cdef long voxel_size_0 = self.voxel_size_0
# Return -1 if point lies outside bounds
if not (0 <= loc.x < resolution and 0<= loc.y < resolution and 0 <= loc.z < resolution):
return -1
# Coordinates in coarse voxel grid
cdef Vector3D loc0 = Vector3D(
x=loc.x >> depth,
y=loc.y >> depth,
z=loc.z >> depth,
)
# Initial voxels
cdef int idx = vec_to_idx(loc0, resolution_0)
cdef Voxel voxel = self.voxels[idx]
assert(voxel.loc.x == loc0.x * voxel_size_0)
assert(voxel.loc.y == loc0.y * voxel_size_0)
assert(voxel.loc.z == loc0.z * voxel_size_0)
# Relative coordinates
cdef Vector3D loc_rel = Vector3D(
x=loc.x - (loc0.x << depth),
y=loc.y - (loc0.y << depth),
z=loc.z - (loc0.z << depth),
)
cdef Vector3D loc_offset
cdef long voxel_size = voxel_size_0
while not voxel.is_leaf:
voxel_size = voxel_size >> 1
assert(voxel_size >= 1)
# Determine child
loc_offset = Vector3D(
x=1 if (loc_rel.x >= voxel_size) else 0,
y=1 if (loc_rel.y >= voxel_size) else 0,
z=1 if (loc_rel.z >= voxel_size) else 0,
)
# New voxel
idx = voxel.children[loc_offset.x][loc_offset.y][loc_offset.z]
voxel = self.voxels[idx]
# New relative coordinates
loc_rel = Vector3D(
x=loc_rel.x - loc_offset.x * voxel_size,
y=loc_rel.y - loc_offset.y * voxel_size,
z=loc_rel.z - loc_offset.z * voxel_size,
)
assert(0<= loc_rel.x < voxel_size)
assert(0<= loc_rel.y < voxel_size)
assert(0<= loc_rel.z < voxel_size)
# Return idx
return idx
cdef inline void add_grid_point(self, Vector3D loc):
cdef GridPoint point = GridPoint(
loc=loc,
value=0.,
known=False,
)
self.grid_point_hash[vec_to_idx(loc, self.resolution + 1)] = self.grid_points.size()
self.grid_points.push_back(point)
cdef inline int get_grid_point_idx(self, Vector3D loc):
p_idx = self.grid_point_hash.find(vec_to_idx(loc, self.resolution + 1))
if p_idx == self.grid_point_hash.end():
return -1
cdef int idx = dref(p_idx).second
assert(self.grid_points[idx].loc.x == loc.x)
assert(self.grid_points[idx].loc.y == loc.y)
assert(self.grid_points[idx].loc.z == loc.z)
return idx |