import os import logging from typing import TypedDict, Annotated from langgraph.graph.message import add_messages from langchain_core.messages import AnyMessage, HumanMessage, AIMessage from langchain_openai import ChatOpenAI from langgraph.prebuilt import ToolNode from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from smolagents import gradio_ui from dotenv import load_dotenv from retriever import guest_info_tool from tools import weather_info_tool, hub_stats_tool import gradio_ui_langgraph # logging.basicConfig(level=logging.DEBUG) load_dotenv() # Generate the chat interface, and append the tools tools = [guest_info_tool, weather_info_tool, hub_stats_tool] llm = ChatOpenAI(model="gpt-4o") llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False) """ llm = HuggingFaceEndpoint( repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", huggingfacehub_api_token=os.environ["HF_TOKEN"], # HUGGINGFACEHUB_API_TOKEN ) chat = ChatHuggingFace(llm=llm, verbose=True) chat_with_tools = chat.bind_tools(tools) """ # Generate the AgentState and Agent graph class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): return { "messages": [llm_with_tools.invoke(state["messages"])], # or chat_with_tools } ## The graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") alfred = builder.compile() gradio_ui_langgraph.GradioUI(alfred).launch()